




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1如图,在平面直角坐标系中,RtABO中,ABO=90,OB边在x轴上,将ABO绕点B顺时针旋转60得到CBD若点A的坐标为(-2,2),则点C的坐标为( )A(,1)B(1,)C(1,2)D(2,1)2如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是()A主视图B左视图C俯视图D主
2、视图和俯视图3如图,已知,是的中点,且矩形与矩形相似,则长为()A5BCD64下面四组图形中,必是相似三角形的为()A两个直角三角形B两条边对应成比例,一个对应角相等的两个三角形C有一个角为40的两个等腰三角形D有一个角为100的两个等腰三角形5小明、小亮、小梅、小花四人共同探究函数的值的情况,他们作了如下分工:小明负责找函数值为1时的值,小亮负责找函数值为0时的值,小梅负责找最小值,小花负责找最大值几分钟后,各自通报探究的结论,其中错误的是( )A小明认为只有当时,函数值为1;B小亮认为找不到实数,使函数值为0;C小花发现当取大于2的实数时,函数值随的增大而增大,因此认为没有最大值;D小梅发
3、现函数值随的变化而变化,因此认为没有最小值6如图,正方形的边长为4,点在的边上,且,与关于所在的直线对称,将按顺时针方向绕点旋转得到,连接,则线段的长为( )A4BC5D67如图,在中,两个顶点在轴的上方,点的坐标是.以点为位似中心,在轴的下方作的位似,图形,使得的边长是的边长的2倍.设点的横坐标是-3,则点的横坐标是( )A2B3C4D58如图,在ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是( )A6 B C9 D9为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合
4、格产品的个数整理成甲,乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是( )A甲、乙的众数相同B甲、乙的中位数相同C甲的平均数小于乙的平均数D甲的方差小于乙的方差10如图,的外接圆的半径是.若,则的长为( )ABCD11如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AFx(0.2x0.8),ECy则在下面函数图象中,大致能反映y与x之间函数关系的是()ABCD12抛物线的开口方向是( )A向下B向上C向左D向右二、填空题(每题4分,共24分)13若关于x的一元二次方程的一个根为1,则k的值为_.14若将方程x2+6x=7化为(x+m)2=1
5、6,则m=_.15如图,P是等边三角形ABC内一点,将线段BP绕点B逆时针旋转60得到线段BQ,连接AQ若PA=4,PB=5,PC=3,则四边形APBQ的面积为_16已知,则的值是_17已知:在O中,直径AB4,点P、Q均在O上,且BAP60,BAQ30,则弦PQ的长为_18用如图所示的两个转盘(分别进行四等分和三等分),设计一个“配紫色”的游戏(红色与蓝色可配成紫色),则能配成紫色的概率为_三、解答题(共78分)19(8分)如图,在平面直角坐标系中,点的坐标分别是,(1)将绕点逆时针旋转得到,点,对应点分别是,请在图中画出,并写出,的坐标;(2)以点为位似中心,将作位似变换且缩小为原来的,在
6、网格内画出一个符合条件的20(8分)画出如图所示的几何体的三种视图21(8分)如图,在ABC中,C = 90,以AC为直径的O交AB于点D,连接OD,点E在BC上, B E=DE(1)求证:DE是O的切线;(2)若BC=6,求线段DE的长;(3)若B=30,AB =8,求阴影部分的面积(结果保留)22(10分)如图,抛物线(a0)经过A(-1,0),B(2,0)两点,与y轴交于点C(1)求抛物线的解析式及顶点D的坐标;(2)点P在抛物线的对称轴上,当ACP的周长最小时,求出点P的坐标;(3) 点N在抛物线上,点M在抛物线的对称轴上,是否存在以点N为直角顶点的RtDNM与RtBOC相似,若存在,
7、请求出所有符合条件的点N的坐标;若不存在,请说明理由23(10分)因2019年下半年猪肉大涨,某养猪专业户想扩大养猪场地,但为了节省材料,利用一面墙(墙足够长)为一边,用总长为120的材料围成了如图所示三块矩形区域,而且这三块矩形区域的面积相等,设的长度为(),矩形区域的面积().(1)求与之间的函数表达式,并注明自变量的取值范围.(2)当为何值时,有最大值?最大值是多少?24(10分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同)把这四张卡片背面向上洗匀后,进行下列操作:(1)若任意抽取其中一张卡片,抽到的卡
8、片既是中心对称图形又是轴对称图形的概率是 ;(2)若任意抽出一张不放回,然后再从余下的抽出一张请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率25(12分)如图,抛物线yax2+bx+6与x轴交于点A(6,0),B(1,0),与y轴交于点C(1)求抛物线的解析式;(2)若点M为该抛物线对称轴上一点,当CM+BM最小时,求点M的坐标(3)抛物线上是否存在点P,使BCP为等腰三角形?若存在,有几个?并请在图中画出所有符合条件的点P,(保留作图痕迹);若不存在,说明理由26定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边
9、形”(1)如图1,在的正方形网格中,有一个网格和两个网格四边形与,其中是被分割成的“友好四边形”的是 ;(2)如图2,将绕点逆时针旋转得到,点落在边,过点作交的延长线于点,求证:四边形是“友好四边形”;(3)如图3,在中,的面积为,点是的平分线上一点,连接,若四边形是被分割成的“友好四边形”,求的长参考答案一、选择题(每题4分,共48分)1、B【解析】作CHx轴于H,如图,点A的坐标为(2, ),ABx轴于点B,tanBAC= ,A=,ABO绕点B逆时针旋转60得到CBD,BC=BA=,OB=2,CBH=,在RtCBH中,,OH=BHOB=32=1,故选:B.【点睛】根据直线解析式求出点A的坐
10、标,然后求出AB、OB,再利用勾股定理列式求出OA,然后判断出C=30,CDx轴,再根据直角三角形30角所对的直角边等于斜边的一半求出BE,利用勾股定理列式求出CE,然后求出点C的横坐标,再写出点C的坐标即可2、B【解析】主视图是从正面观察得到的图形,左视图是从左侧面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断解:根据图形,可得:平移过程中不变的是的左视图,变化的是主视图和俯视图故选B3、B【分析】根据相似多边形的性质列出比例式,计算即可【详解】解:矩形ABDC与矩形ACFE相似, ,是的中点,AE=5,解得,AC=5,故选B【点睛】本题考查的是相似多边形的性质,掌握相似
11、多边形的对应边的比相等是解题的关键4、D【分析】根据等腰三角形的性质、直角三角形的性质和相似三角形的判定方法即可判定.【详解】解:两个直角三角形不一定相似,因为只有一个直角相等,A不一定相似;两条边对应成比例,一个对应角相等的两个三角形不一定相似,因为这个对应角不一定是夹角;B不一定相似;有一个角为40的两个等腰三角形不一定相似,因为40的角可能是顶角,也可能是底角,C不一定相似;有一个角为100的两个等腰三角形一定相似,因为100的角只能是顶角,所以两个等腰三角形的顶角和底角分别相等,D一定相似;故选:D【点睛】本题考查了等腰三角形和直角三角形的性质以及相似三角形的判定,属于基础题型,熟练掌
12、握相似三角形的判定方法是关键.5、D【分析】根据二次函数的最值及图象上点的坐标特点回答即可【详解】因为该抛物线的顶点是,所以正确;根据二次函数的顶点坐标,知它的最小值是1,所以正确;根据图象,知对称轴的右侧,即时,y随x的增大而增大,所以正确;因为二次项系数10,有最小值,所以错误;故选:D【点睛】本题主要考查了二次函数图象与最值问题,准确分析是解题的关键6、C【分析】如图,连接BE,根据轴对称的性质得到AF=AD,EAD=EAF,根据旋转的性质得到AG=AE,GAB=EAD求得GAB=EAF,根据全等三角形的性质得到FG=BE,根据正方形的性质得到BC=CD=AB=1根据勾股定理即可得到结论
13、【详解】解:如图,连接BE,AFE与ADE关于AE所在的直线对称,AF=AD,EAD=EAF,ADE按顺时针方向绕点A旋转90得到ABG,AG=AE,GAB=EADGAB=EAF,GAB+BAF=BAF+EAFGAF=EABGAFEAB(SAS)FG=BE,四边形ABCD是正方形,BC=CD=AB=1DE=1,CE=2在RtBCE中,BE=,FG=5,故选:C【点睛】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等7、B【解析】设点B的横坐标为x,然后根据ABC与ABC的位似比为2
14、列式计算即可求解【详解】设点B的横坐标为x,ABC的边长放大到原来的2倍得到ABC,点C的坐标是(-1,0),x-(-1)=2(-1)-(-1),即x+1=2(-1+1),解得x=1,所以点B的对应点B的横坐标是1故选B【点睛】本题考查了位似变换,坐标与图形的性质,根据位似比列出方程是解题的关键8、C【解析】试题分析:如图,设O与AC相切于点E,连接OE,作OP1BC垂足为P1交O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1OQ1,AB=10,AC=8,BC=6,AB2=AC2+BC2,C=10,OP1B=10,OP1ACAO=OB,P1C=P1B,OP1=12AC=4,P1Q1最小值
15、为OP1OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,PQ长的最大值与最小值的和是1故选C考点:切线的性质;最值问题9、D【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,=4.4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.10、A【分析】由题意连接OA、OB,根据圆周角定理求出A
16、OB,利用勾股定理进行计算即可【详解】解:连接OA、OB,由圆周角定理得:AOB=2C=90,所以的长为.故选:A.【点睛】本题考查的是三角形的外接圆和外心的概念和性质,掌握圆周角定理和勾股定理是解题的关键11、C【分析】通过相似三角形EFBEDC的对应边成比例列出比例式,从而得到y与x之间函数关系式,从而推知该函数图象【详解】根据题意知,BF=1x,BE=y1,AD/BC,EFBEDC,即,y=(0.2x0.8),该函数图象是位于第一象限的双曲线的一部分A、D的图象都是直线的一部分,B的图象是抛物线的一部分,C的图象是双曲线的一部分故选C12、B【分析】抛物线的开口方向由抛物线的解析式y=a
17、x2+bx+c(a0)的二次项系数a的符号决定,据此进行判断即可【详解】解:y=2x2的二次项系数a=20,抛物线y=2x2的开口方向是向上;故选:B【点睛】本题考查了二次函数图象的开口方向二次函数y=ax2+bx+c(a0)的图象的开口方向:当a0时,开口方向向下;当a0时,开口方向向上二、填空题(每题4分,共24分)13、0【解析】把x1代入方程得,即,解得.此方程为一元二次方程,即, 故答案为0.14、3【详解】在方程x2+6x=7的两边同时加上一次项系数的一半的平方,得x2+6x+32=7+32,(x+3)2=16m=3.15、【分析】由旋转的性质可得BPQ是等边三角形,由全等三角形的
18、判定可得ABQCBP(SAS),由勾股定理的逆定理可得APQ是直角三角形,求四边形的面积转化为求两个特殊三角形的面积即可【详解】解:连接PQ,由旋转的性质可得,BP=BQ,又PBQ=60,BPQ是等边三角形,PQ=BP,在等边三角形ABC中,CBA=60,AB=BC,ABQ=60-ABPCBP=60-ABPABQ=CBP在ABQ与CBP中 ,ABQCBP(SAS),AQ=PC,又PA=4,PB=5,PC=3,PQ=BP=5,PC=AQ=3,在APQ中,因为,25=16+9,由勾股定理的逆定理可知APQ是直角三角形,故答案为:【点睛】本题主要考查了旋转的性质、全等三角形的判定、勾股定理的逆定理及
19、特殊三角形的面积,解题的关键是作出辅助线,转化为特殊三角形进行求解16、【分析】设a=3k,则b=4k,代入计算即可【详解】设a=3k,则b=4k,故答案为:【点睛】本题考查了比例的性质熟练掌握k值法是解答本题的关键17、2或1【分析】当点P和Q在AB的同侧,如图1,连接OP、OQ、PQ,先计算出PAQ30,根据圆周角定理得到POQ60,则可判断OPQ为等边三角形,从而得到PQOP2;当点P和Q在AB的同侧,如图1,连接PQ,先计算出PAQ90,根据圆周角定理得到PQ为直径,从而得到PQ1【详解】解:当点P和Q在AB的同侧,如图1,连接OP、OQ、PQ,BAP60,BAQ30,PAQ30,PO
20、Q2PAQ23060,OPQ为等边三角形,PQOP2;当点P和Q在AB的同侧,如图1,连接PQ,BAP60,BAQ30,PAQ90,PQ为直径,PQ1,综上所述,PQ的长为2或1故答案为2或1【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半18、【分析】根据已知列出图表,求出所有结果,即可得出概率【详解】列表得:红黄绿蓝红(红,红)(红,黄)(红,绿)(红,蓝)蓝(蓝,红)(蓝,黄)(蓝,绿)(蓝,蓝)蓝(蓝,红)(蓝,黄)(蓝,绿)(蓝,蓝)所有等可能的情况数有12种,其中配成紫色的情况数有3种,P配成紫色=故答案为:【点睛】此题主要考
21、查了列表法求概率,根据已知列举出所有可能,进而得出配紫成功概率是解题关键三、解答题(共78分)19、(1)见解析,;(2)见解析【分析】(1)利用网格特点和旋转的性质,画出点O,B对应点E,F,从而得到AEF,然后写出E、F的坐标;(2)分别连接OE、OF,然后分别去OA、OE、OF的三等份点得到A1、E1、F1,从而得到A1E1F1【详解】解:(1)如图,为所作,(2)如图,为所作图形【点睛】本题考查了作图-位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图
22、形也考查了旋转变换20、见解析【分析】直接利用三视图的画法分别从不同角度得出答案【详解】解:如图所示:【点睛】此题主要考查了作三视图,正确把握观察角度是解题关键21、(1)详见解析;(2)3;(3)【分析】(1)根据OA=OD,BE=DE,得A=1,B=2,根据ACB=90,即可得1+2=90,即可得ODDE,从而可证明结论;(2)连接CD,根据现有条件推出CE是O的切线,再结合DE是O的切线,推出DECE又BE=DE,即可得出DE;(3)过O作OGAD,垂足为G,根据已知条件推出AD,AG和OG的值,再根据,即可得出答案【详解】解:(1)证明:OA=OD,BE=DE,A=1,B=2,ABC中
23、,ACB=90,A+B=90,1+2=90,ODE=180-(1+2)=90,ODDE,又OD为O的半径,DE是O的切线;(2)连接CD,则ADC=90,ACB=90,ACBC,又AC为O的直径,CE是O的切线,又DE是O的切线,DECE又BE=DE,DECE=BE;(3)过O作OGAD,垂足为G,则,RtABC中,B=30,AB=8,AC=,=60(又OA=OD),COD=120,AOD为等边三角形,AD=AO=OD=2,OG,阴影部分的面积为【点睛】本题考查了圆的切线的性质和判定,三角函数和等边三角形的性质,掌握知识点是解题关键22、(1),D(,);(2)P(,);(3)存在N(,)或(
24、,)或(,)或(,)【解析】试题分析:(1)利用待定系数法求出抛物线解析式;(2)确定出当ACP的周长最小时,点P就是BC和对称轴的交点,利用两点间的距离公式计算即可;(3)作出辅助线,利用tanMDN=2或,建立关于点N的横坐标的方程,求出即可试题解析:(1)由于抛物线 (a0)经过A(-1,0),B(2,0)两点,因此把A、B两点的坐标代入 (a0),可得:;解方程组可得:,故抛物线的解析式为:,=,所以D的坐标为(,)(2)如图1,设P(,k),C(0,1),A(-1,0),B(2,0),A、B两点关于对称轴对称,连接CB交对称轴于点P,则ACP的周长最小设直线BC为y=kx+b,则:,
25、解得:,直线BC为:当x=时,=,P(,);(3)存在如图2,过点作NFDM,B(2,0),C(0,1),OB=2,OC=1,tanOBC=,tanOCB=2,设点N(m,),FN=|m|,FD=|=|,RtDNM与RtBOC相似,MDN=OBC,或MDN=OCB;当MDN=OBC时,tanMDN=,m=(舍)或m=或m=,N(,)或(,);当MDN=OCB时,tanMDN=2,m=(舍)或m=或m=,N(,)或(,);符合条件的点N的坐标(,)或(,)或(,)或(,)考点:二次函数综合题;相似三角形的判定与性质;分类讨论;压轴题23、(1);(2)时,有最大值【分析】(1)根据题意三个区域面
26、积直接求与之间的函数表达式,并根据表示自变量的取值范围即可;(2)由题意对与之间的函数表达式进行配方,即可求的最大值.【详解】解:(1)假设为,由题意三个区域面积相等可得,区域1=区域2,面积法,得,由总长为120,故,得.所以,面积(2),所以当时,为最大值.【点睛】本题考查二次函数的性质在实际生活中的应用最大值的问题常利用函数的增减性来解答24、(1);(2).【解析】(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可;(2)画出树状图,然后根据概率公式列式计算即可得解【详解】(1)正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,抽到的卡片既是中心对称图形又是轴对称图形的概率是;(2)根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,所以,P(抽出的两张卡片的图形是中心对称图形)【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比25、(1)yx2+5x+6;(2)M(,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论