版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1下列函数的对称轴是直线的是( )ABCD2如图,在四边形ABCD中,AC与BD交于点E,则的值是( )ABCD3如图,是的外接圆,是直径若,则等于( )ABCD4如图,AC,BE是O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是( )AABEBACFCABDDADE52019的倒数
2、的相反数是( )A2019BCD20196如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB的宽为8cm,水面最深的地方高度为2cm,则该输水管的半径为()A3cmB5cmC6cmD8cm7如图,的直径的长为,弦长为,的平分线交于,则长为( )A7B7C8D98不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()ABCD9甲、乙两位同学在一次用频率估计概率的试验中,统计了某一结果出现的频率,给出的 统计图如图所示,则符合这一结果的试验可能是 ( )A掷一枚硬币,出现正面朝上的概率B掷一枚硬币,出现反
3、面朝上的概率C掷一枚骰子,出现 点的概率D从只有颜色不同的两个红球和一个黄球中,随机取出一个球是黄球的概率10在RtABC中,C90,tanA,则sinA的值为()ABCD二、填空题(每小题3分,共24分)11在中,在外有一点,且,则的度数是_12若,则化简成最简二次根式为_13如图,在的矩形方框内有一个不规则的区城(图中阴影部分所示),小明同学用随机的办法求区域的面积若每次在矩形内随机产生10000个点,并记录落在区域内的点的个数,经过多次试验,计算出落在区域内点的个数的平均值为6700个,则区域的面积约为_14如图,过上一点作的切线,与直径的延长线交于点,若,则的度数为_15如图,若被击打
4、的小球飞行高度(单位:)与飞行时间(单位:)之间具有的关系为,则小球从飞出到落地所用的时间为_16如图,在中,、分别是、的中点,点在上,是的平分线,若,则的度数是_17抛物线(a0)过点(1,0)和点(0,3),且顶点在第四象限,则a的取值范围是_18如图,铁道口的栏杆短臂长1m,长臂长16m当短臂端点下降0.5m时,长臂端点升高_三、解答题(共66分)19(10分)解方程:x24x12=120(6分)已知:关于x的方程(1)求证:m取任何值时,方程总有实根(2)若二次函数的图像关于y轴对称.a、求二次函数的解析式b、已知一次函数,证明:在实数范围内,对于同一x值,这两个函数所对应的函数值均成
5、立.(3)在(2)的条件下,若二次函数的象经过(-5,0),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值均成立,求二次函数的解析式.21(6分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;(2)若菜园面积为384m2,求x的值;(3)求菜园的最大面积22(8分)随着传统的石油、煤等自然资源逐渐消耗殆尽,风力、核能、水电等一批新能源被广泛使用现在山顶的一块平地上建有一座风车,山的斜坡的坡
6、度,长是100米,在山坡的坡底处测得风车顶端的仰角为,在山坡的坡顶处测得风车顶端的仰角为,请你计算风车的高度(结果保留根号)23(8分)如图,抛物线yx2+x与x轴相交于A,B两点,顶点为P(1)求点A,点B的坐标;(2)在抛物线上是否存在点E,使ABP的面积等于ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由24(8分)如图,直线yk1x+b与双曲线y交于点A(1,4),点B(3,m)(1)求k1与k2的值;(2)求AOB的面积25(10分)已知二次函数.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,
7、顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由26(10分)边长为2的正方形在平面直角坐标系中的位置如图所示,点是边的中点,连接,点在第一象限,且,.以直线为对称轴的抛物线过,两点.(1)求抛物线的解析式;(2)点从点出发,沿射线每秒1个单位长度的速度运动,运动时间为秒.过点作于点,当为何值时,以点,为顶点的三角形与相似?(3)点为直线上一动点,点为抛物线上一动点,是否存在点,使得以点,为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.参考答案一、选择题(
8、每小题3分,共30分)1、C【分析】根据二次函数的性质分别写出各选项中抛物线的对称轴,然后利用排除法求解即可【详解】A、对称轴为y轴,故本选项错误;B、对称轴为直线x=3,故本选项错误;C、对称轴为直线x=-3,故本选项正确;D、=对称轴为直线x=3,故本选项错误故选:C【点睛】本题考查了二次函数的性质,主要利用了对称轴的确定,是基础题2、C【分析】证明,得出,证出,得出,因此,在中,由三角函数定义即可得出答案【详解】,在中,;故选:C【点睛】本题考查了平行线的性质、相似三角形的判定与性质以及解直角三角形的应用等知识;熟练掌握解直角三角形,证明三角形相似是解题的关键3、C【解析】根据同弧所对的
9、圆周角等于圆心角的一半可得:A=BOC=40【详解】BOC=80,A=BOC=40故选C【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半4、B【解析】试题分析:AOA=OB=OE,所以点O为ABE的外接圆圆心;BOA=OCOF,所以点不是ACF的外接圆圆心;COA=OB=OD,所以点O为ABD的外接圆圆心;DOA=OD=OE,所以点O为ADE的外接圆圆心;故选B考点:三角形外心5、C【分析】先求-2019的倒数,再求倒数的相反数即可;【详解】解:2019的倒数是,的相反数为,故答案为:C【点睛】本题考查倒数和相反数熟练掌握倒数和相反数的求
10、法是解题的关键6、B【分析】先过点O作ODAB于点D,连接OA,由垂径定理可知ADAB,设OAr,则ODr2,在RtAOD中,利用勾股定理即可求出r的值【详解】解:如图所示:过点O作ODAB于点D,连接OA,ODAB,ADAB4cm,设OAr,则ODr2,在RtAOD中,OA2OD2+AD2,即r2(r2)2+42,解得r5cm该输水管的半径为5cm;故选:B【点睛】此题主要考查垂径定理,解题的关键是熟知垂径定理及勾股定理的运用.7、B【解析】作DFCA,交CA的延长线于点F,作DGCB于点G,连接DA,DB由CD平分ACB,根据角平分线的性质得出DF=DG,由HL证明AFDBGD,CDFCD
11、G,得出CF=7,又CDF是等腰直角三角形,从而求出CD=7.【详解】作DFCA,垂足F在CA的延长线上,作DGCB于点G,连接DA,DB,CD平分ACB,ACD=BCDDF=DG,DA=DB,AFD=BGD=90,AFDBGD,AF=BG易证CDFCDG,CF=CG,AC=6,BC=8,AF=1, CF=7,CDF是等腰直角三角形,CD=7,故选B【点睛】本题综合考查了圆周角的性质,圆心角、弧、弦的对等关系,全等三角形的判定,角平分线的性质等,综合性较强,有一定的难度,正确添加辅助线、熟练应用相关知识是解题的关键.8、D【分析】用列表法或树状图法可以列举出所有等可能出现的结果,然后看符合条件
12、的占总数的几分之几即可【详解】解:两次摸球的所有的可能性树状图如下:第一次 第二次 开始两次都是红球故选D【点睛】考查用树状图或列表法,求等可能事件发生的概率,关键是列举出所有等可能出现的结果数,然后用分数表示,同时注意“放回”与“不放回”的区别9、D【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P0.33,计算四个选项的概率,约为0.33者即为正确答案【详解】解:A. 掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;B. 掷一枚硬币,出现反面朝上的概率为,故此选项不符合题意;C. 掷一枚骰子,出现 点的概率为,故此选项不符合题意;D. 从只有颜色不同的两个红球和一个黄球中
13、,随机取出一个球是黄球的概率为,故此选项符合题意;故选:D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比同时此题在解答中要用到概率公式10、B【分析】由题意直接根据三角函数的定义进行分析即可求解【详解】解:在RtABC中,C90,tanA,可以假设BCk,AC2k,ABk,sinA故选:B【点睛】本题考查同角三角函数的计算,解题本题的关键是明确sinA等于对边与斜边的比二、填空题(每小题3分,共24分)11、【分析】由,可知A、C、B、M四点共圆,AB为圆的直径,则是弦AC所对的圆周角,此时需要对M点的位置进行分类讨论,点M分
14、别在直线AC的两侧时,根据同弧所对的圆周角相等和圆内接四边形对角互补可得两种结果【详解】解:在中,BAC=ACB=45,点在外,且,即AMB=90A、C、B、M四点共圆,如图,当点M在直线AC的左侧时,,;如图,当点M在直线AC的右侧时,故答案为:135或45【点睛】本题考查了圆内接四边形对角互补和同弧所对的角相等,但解题的关键是要先根据题意判断出A、C、B、M四点共圆12、【分析】根据二次根式的性质,进行化简,即可.【详解】=原式=,故答案是:.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质,是解题的关键.13、8.04【分析】先利用古典概型的概率公式求概率,再求区域A的面积的估计值
15、【详解】解:由题意,在矩形内随机产生10000个点,落在区域A内点的个数平均值为6700个,概率P=,43的矩形面积为12,区域A的面积的估计值为:0.6712=8.04;故答案为:8.04;【点睛】本题考查古典概型概率公式,考查学生的计算能力,属于中档题14、26【分析】连接OC,利用切线的性质可求得COD的度数,然后利用圆周角定理可得出答案【详解】解:连接OC,CD与O相切于点D,与直径AB的延长线交于点D,DCO=90,D=38,COD=52,E=COD =26,故答案为:26【点睛】此题考查切线的性质以及圆周角定理,关键是通过连接半径构造直角三角形求出COD的度数15、1【分析】根据关
16、系式,令h=0即可求得t的值为飞行的时间.【详解】解:依题意,令得:得:解得:(舍去)或即小球从飞出到落地所用的时间为故答案为1【点睛】本题考查了二次函数的性质在实际生活中的应用此题为数学建模题,关键在于读懂小球从飞出到落地即飞行的高度为0时的情形,借助二次函数解决实际问题此题较为简单.16、100【分析】利用三角形中位线定理可证明DE/BC,再根据两直线平行,同位角相等可求得AED,再根据角平分线的定义可求得DEF,最后根据两直线平行,同旁内角互补可求得EFB的度数【详解】解:在ABC中,D、E分别是AB、AC的中点,DE是ABC的中位线,DEBC,AED=C=80,DEF+EFB=180,
17、又ED是AEF的角平分线,DEF=AED=80,EFB=180-DEF=100故答案为:100【点睛】本题考查三角形中位线定理,平行线的性质定理,角平分线的有关证明能得出DE是ABC中位线,并根据三角形的中位线平行于第三边得出DEBC是解题关键17、0a3.【解析】试题解析:二次函数的图象与坐标轴分别交于点(0,3)、(1,0),c=3,ab+c=0,即b=a3,顶点在第四象限, 又a0,b0,b=a30,即a3,故 故答案为点睛:二次函数的顶点坐标为:18、8m【分析】由题意证ABOCDO,可得,即,解之可得【详解】如图,由题意知BAO=C=90,AOB=COD,ABOCDO,即,解得:CD
18、=8,故答案为:8m【点睛】本题主要考查相似三角形的应用,熟练掌握相似三角形的判定与性质是解题的关键三、解答题(共66分)19、x1=6,x2=2【解析】试题分析:用因式分解法解方程即可.试题解析: 或 所以 20、(1)证明见解析;(2)a、y1=x2-1;b、证明见解析;(3).【解析】(1)首先此题的方程并没有明确是一次方程还是二次方程,所以要分类讨论:m=0,此时方程为一元一次方程,经计算可知一定有实数根;m0,此时方程为二元一次方程,可表示出方程的根的判别式,然后结合非负数的性质进行证明(2)由于抛物线的图象关于y轴对称,那么抛物线的一次项系数必为0,可据此求出m的值,从而确定函数的
19、解析式;此题可用作差法求解,令y1-y2,然后综合运用完全平方式和非负数的性质进行证明(3)根据的结论,易知y1、y2的交点为(1,0),由于y1y3y2成立,即三个函数都交于(1,0),结合点(-5,0)的坐标,可用a表示出y3的函数解析式;已知y3y2,可用作差法求解,令y=y3-y2,可得到y的表达式,由于y3y2,所以y0,可据此求出a的值,即可得到抛物线的解析式【详解】解:(1)分两种情况:当m=0时,原方程可化为3x-3=0,即x=1; m=0时,原方程有实数根;当m0时,原方程为关于x的一元二次方程, =-3(m-1)2-4m(2m-3)=m2-6m+9=(m-3)20, 方程有
20、两个实数根;综上可知:m取任何实数时,方程总有实数根;(2)关于x的二次函数y1=mx2-3(m-1)x+2m-3的图象关于y轴对称;3(m-1)=0,即m=1; 抛物线的解析式为:y1=x2-1;y1-y2=x2-1-(2x-2)=(x-1)20,y1y2(当且仅当x=1时,等号成立);(3)由知,当x=1时,y1=y2=0,即y1、y2的图象都经过(1,0); 对应x的同一个值,y1y3y2成立,y3=ax2+bx+c的图象必经过(1,0),又y3=ax2+bx+c经过(-5,0), y3=a(x-1)(x+5)=ax2+4ax-5a;设y=y3-y2=ax2+4ax-5a-(2x-2)=
21、ax2+(4a-2)x+(2-5a);对于x的同一个值,这三个函数对应的函数值y1y3y2成立, y3-y20,y=ax2+(4a-2)x+(2-5a)0;根据y1、y2的图象知:a0, y最小=0(4a-2)2-4a(2-5a)0, (3a-1)20,而(3a-1)20,只有3a-1=0,解得a= , 抛物线的解析式为:【点睛】本题考查二次函数与一元二次方程的关系、根的判别式、完全平方公式、非负数的性质以及用待定系数法确定函数解析式的方法,难度较大,21、(1)见详解;(2)x=18;(3) 416 m2.【解析】(1)根据“垂直于墙的长度=可得函数解析式;(2)根据矩形的面积公式列方程求解
22、可得;(3)根据矩形的面积公式列出总面积关于x的函数解析式,配方成顶点式后利用二次函数的性质求解可得【详解】(1)根据题意知,yx;(2)根据题意,得(x)x384,解得x18或x32.墙的长度为24 m,x18.(3)设菜园的面积是S,则S(x)xx2x (x25)2.0,当x25时,S随x的增大而增大.x24,当x24时,S取得最大值,最大值为416.答:菜园的最大面积为416 m2.【点睛】本题主要考查二次函数和一元二次方程的应用,解题的关键是将实际问题转化为一元二次方程和二次函数的问题22、【分析】由斜坡BD的坡度可求DBC=30,从而得到DBA=DAB=15,所以AD=BD,然后在R
23、tADE中,利用ADE的正弦求解即可【详解】斜坡BD的坡度,DBC=30,又ABC=45,ADE=60,DBA=DAB=15,AD=BD=100米在RtADE中,sinADE=,AE=ADsinADE=100sin60= 50(米)【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题23、(1)A(3,0),B(1,0);(2)存在符合条件的点E,其坐标为(12,2)或(1+2,2)或(1,2)【分析】(1)令y=0可求得相应方程的两根,则可求得A、B的坐标;(2)可先求得P点坐标,则可求得点E到AB的距离,可求得E点纵坐标,再代
24、入抛物线解析式可求得E点坐标【详解】(1)令y=0,则x2+x0,解得:x=3或x=1,A(3,0),B(1,0);(2)存在理由如下:yx2+x(x+1)22,P(1,2)ABP的面积等于ABE的面积,点E到AB的距离等于2,当点E在x轴下方时,则E与P重合,此时E(1,2);当点E在x轴上方时,则可设E(a,2),a2+a2,解得:a=12或a=1+2,E(12,2)或E(1+2,2)综上所述:存在符合条件的点E,其坐标为(12,2)或(1+2,2)或(1,2)【点睛】本题考查了二次函数的性质及与坐标轴的交点,分别求得A、B、P的坐标是解答本题的关键24、(1)k1与k2的值分别为,4;(
25、2)【分析】(1)先把A点坐标代入y中可求出k2得到反比例函数解析式为y,再利用反比例函数解析式确定B(3,),然后利用待定系数法求一次函数解析式得到k1的值;(2)设直线AB与x轴交于C点,如图,利用x轴上点的坐标特征求出C点坐标,然后根据三角形面积公式,利用SAOBSAOCSBOC计算【详解】解:(1)把A(1,4)代入y得k2144,反比例函数解析式为y,把B(3,m)代入y得3m4,解得m,则B(3,),把A(1,4),B(3,)代入yk1x+b得,解得,一次函数解析式为yx+,k1与k2的值分别为,4;(2)设直线AB与x轴交于C点,如图,当y0时,x+0,解得x4,则C(4,0),
26、SAOBSAOCSBOC444【点睛】本题考查了反比例函数与一次函数的综合,待定系数法求函数解析式,以及三角形的面积,熟练掌握待定系数法是解答本题的关键25、(1)或;(2)C点坐标为:(0,3),D(2,1);(3)P(,0)【分析】(1)根据二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可(2)把m=2,代入求出二次函数解析式,利用配方法求出顶点坐标以及图象与y轴交点即可(3)根据两点之间线段最短的性质,当P、C、D共线时PC+PD最短,利用相似三角形的判定和性质得出PO的长即可得出答案【详解】解:(1)二次函数的图象经过坐标原点O(0,0),代入得:,解得:m=1二次函数的解析式为:或(2)m=2,二次函数为:抛物线的顶点为:D(2,1)当x=0时,y=3,C点坐标为:(0,3)(3)存在,当P、C、D共线时PC+PD最短过点D作DEy轴于点E,PODE,COPCED,即,解得:PC+PD最短时,P点的坐标为:P(,0)26、(1);(2)或时,以点,为顶点的三角形与相似;(3)存在,四边形是平行四边形时,;四边形是平行四边形时,;四边形是平行四边形时,【分析】(1)根据正方形的性质,可得OAOC,AOCDGE,根据余角的性质,可得OCDGDE,根据全等三角形的判定与性质,可得EGOD1,DGOC2,根据待定系数法,可得函数解析式;(2)分类讨
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 空调安装工程总包
- 矿山扩建延期协议
- 企业信用评级承诺书
- 员工入职承诺书:项目管理篇
- 停车场清洁工聘用协议
- 家电回收物流承诺书模板
- 交通运输参股管理要求
- 果园种植培训租赁协议
- 企业年金管理与资本市场动态
- 服装加工物料提升机租赁合同
- 桥湾750kV变电站工程330kV构支架安装技术措施(1)
- 电动机的维护与保养毕业论文
- 部编版二年级上册道德与法治第二单元 我们的班级 达标测试卷及答案28
- 模拟真实天平(flash模拟型课件)
- 山东生态功能区划(文字)
- DFMEA模板(完整版)
- 发电机组达标投产自查报告
- 2021年贵州高考理综试题含答案
- 《财务管理学》知识点归纳(精华)
- 管道缩写代号.xlsx
- 英格索兰空压机服务协议
评论
0/150
提交评论