版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、纳米技术与纳米材料纳米技术是近十年来蓬勃兴起的新科技,纳米技术是一种在纳米尺度空间内的生产方式和工作方式。纳米技术的内涵非常广泛,它包括纳米材料的制造技术,纳米材料向各个领域应用的技术(含高科技领域),在纳米空间构筑一个器件,实现对原子、分子的翻切、操作以及在纳米微区内对物质传输和能量传输新规律的认识等等。纳米技术作为一门崭新的、面向21世纪的科学技术,它已渗透于精细化工的方方面面,逐步形成纳米精细化工学,可以预言,随着纳米科学技术的飞速发展,会有越来越多的新型纳米材料在精细化工方面得到广泛的应用,精细化工学也会发生巨大的变革。第一节概述一、纳米技术与纳米材料的概念1纳米技术纳米科学技术是研究
2、在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;在这一尺度范围内对原子、分子进行操纵和加工称为纳米技术。我国纳米科学家,国家重点基础研究计划(973计划)纳米材料和纳米结构项目首席科学家、中国科学院固体物理研究所张立德研究员作了总结性的定义:“纳米科技是研究由尺寸在0.1lOOnm之间的物质组成的体系的运动规律和相互作用,以及可能的实际应用中的技术问题的科学技术”。纳米技术包括的内容有:创造和制备优异性能的纳米材料;设计、制备各种纳米器件和装置;探测和分析纳米区域的性质和现象。2纳米材料纳米材料是指晶粒尺寸为纳米级(10-9米)的超细材料。它
3、的微粒尺寸大于原子簇,小于通常的微粒,一般为0.1102nm。它包括体积分数近似相等的两个部分:一是直径为几个或几十个纳米的粒子,二是粒子间的界面。前者具有长程序的晶状结构,后者是既没有长程序也没有短程序的无序结构。在纳米材料中,纳米晶粒和由此而产生的高浓度晶界是它的两个重要特征。纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级,高浓度晶界及晶界原子的特殊结构导致材料的力学性能磁性、介电性、超导性、光学乃至热力学性能的改变。纳米材料跟普通的金属、陶瓷和其它固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或
4、结构单元。其常规纳米材料中的基本颗粒直径不到100nm,包含的原子不到几万个。一个直径为3nm的原子团包含大约900个原子,几乎是英文里一个句点的百万分之一,这个比例相当于一条300多米长的帆船跟整个地球的比例。二、纳米材料的特性纳米材料是指物质的颗粒尺寸vlOOnm的超微粉末,它的比表面积很大,晶界处的原子数比率高达15%50%,些科学家认为,纳米材料不同于晶态与非晶态,是物质的第三态固体材料,其种类很多,可分为金属、陶瓷、有机与无机、复合纳米材料等。纳米材料的特殊性能是由于纳米材料的特殊结构,使之产生四大效应,即小尺寸效应、量子效应(含宏观量子隧道效应)、表面效应和界面效应,从而具有传统材
5、料所不具备的物理、化学性能。纳米材料的表面效应纳米材料的表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化。如图10-1所示:比例庆表面原千敷相对总原子频图10-1表面原子数与粒径的关系从图中可以看出,粒径在10nm以下,将迅速增加表面原子的比例。当粒径降到lnm时,表面原子数比例达到约90%以上,原子几乎全部集中到纳米粒子的表面。由于纳米粒子表面原子数增多,表面原子配位数不足和高的表面能,使这些原子易与其它原子相结合而稳定下来,故具有很高的化学活性。超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。如要防止自燃,可采用表面包覆或有意识地控
6、制氧化速率,使其缓慢氧化生成一层极薄而致密的氧化层,确保表面稳定化。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料。小尺寸效应随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。(1)特殊的光学性质当黄金被细分到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。由此可见,金属超微颗粒对光的反射率很低,通常可低于1
7、%,大约几微米的厚度就能完全消光。利用这个特性可以作为高效率的光热、光电等转换材料,可以高效率地将太阳能转变为热能、电能。此外又有可能应用于红外敏感元件、红外隐身技术等。(2)特殊的热学性质固态物质在其形态为大尺寸时,其熔点是固定的,超细微化后却发现其熔点将显著降低,当颗粒小于10纳米量级时尤为显著。例如,金的常规熔点为1064C,当颗粒尺寸减小到10纳米尺寸时,则降低27C,2纳米尺寸时的熔点仅为327C左右;银的常规熔点为670C,而超微银颗粒的熔点可低于100C。因此,超细银粉制成的导电浆料可以进行低温烧结,此时元件的基片不必采用耐高温的陶瓷材料,甚至可用塑料。采用超细银粉浆料,可使膜厚
8、均匀,覆盖面积大,既省料又具高质量。超微颗粒熔点下降的性质对粉末冶金工业具有一定的吸引力。例如,在钨颗粒中附加0.1%0.5%重量比的超微镍颗粒后,可使烧结温度从3000C降低到12001300C,以致可在较低的温度下烧制成大功率半导体管的基片。(3)特殊的磁学性质人们发现鸽子、海豚、蝴蝶、蜜蜂以及生活在水中的趋磁细菌等生物体中存在超微的磁性颗粒,使这类生物在地磁场导航下能辨别方向,具有回归的本领。磁性超微颗粒实质上是一个生物磁罗盘,生活在水中的趋磁细菌依靠它游向营养丰富的水底。通过电子显微镜的研究表明,在趋磁细菌体内通常含有直径约为210-2微米的磁性氧化物颗粒。小尺寸的超微颗粒磁性与大块材
9、料显著的不同,大块的纯铁矫顽力约为80安米,而当颗粒尺寸减小到210-2微米以下时,其矫顽力可增加1千倍,若进一步减小其尺寸,大约小于610-3微米时,其矫顽力反而降低到零,呈现出超顺磁性。利用磁性超微颗粒具有高矫顽力的特性,已作成高贮存密度的磁记录磁粉,大量应用于磁带、磁盘、磁卡以及磁性钥匙等。利用超顺磁性,人们已将磁性超微颗粒制成用途广泛的磁性液体。(4)特殊的力学性质陶瓷材料在通常情况下呈脆性,然而由纳米超微颗粒压制成的纳米陶瓷材料却具有良好的韧性。因为纳米材料具有大的界面,界面的原子排列是相当混乱的,原子在外力变形的条件下很容易迁移,因此表现出甚佳的韧性与一定的延展性,使陶瓷材料具有新
10、奇的力学性质。美国学者报道氟化钙纳米材料在室温下可以大幅度弯曲而不断裂。研究表明,人的牙齿之所以具有很高的强度,是因为它是由磷酸钙等纳米材料构成的,呈纳米晶粒的金属要比传统的粗晶粒金属硬35倍。至于金属陶瓷等复合纳米材料则可在更大的范围内改变材料的力学性质,其应用前景十分宽广。超微颗粒的小尺寸效应还表现在超导电性、介电性能、声学特性以及化学性能等方面。量子尺寸效应各种元素的原子具有特定的光谱线,如钠原子具有黄色的光谱线。原子模型与量子力学已用能级的概念进行了合理的解释,由无数的原子构成固体时,单独原子的能级就并合成能带,由于电子数目很多,能带中能级的间距很小,因此可以看作是连续的,从能带理论出
11、发成功地解释了大块金属、半导体、绝缘体之间的联系与区别,对介于原子、分子与大块固体之间的超微颗粒而言,大块材料中连续的能带将分裂为分立的能级,能级间的间距随颗粒尺寸减小而增大。当热能、电场能或者磁场能比平均的能级间距还小时,就会呈现一系列与宏观物体截然不同的反常特性,称之为量子尺寸效应。例如,导电的金属在超微颗粒时可以变成绝缘体,磁矩的大小和颗粒中电子是奇数还是偶数有关,比热亦会反常变化,光谱线会产生向短波长方向的移动,这就是量子尺寸效应的宏观表现。因此,对超微颗粒在低温条件下必须考虑量子效应,原有宏观规律已不再成立。宏观量子隧道效应电子具有粒子性又具有波动性,因此存在隧道效应。隧道效应是量子
12、力学中的微观粒子所具有的特性,即在电子能量低于它要穿过的势垒高度时,由于电子具有波动性而具有穿过势垒的几率。近年来,人们发现一些宏观物理量,如微颗粒的磁化强度、量子相干器件中的磁通量等亦显示出隧道效应,称之为宏观的量子隧道效应。量子尺寸效应、宏观量子隧道效应将会是未来微电子、光电子器件的基础,或者说它确立了现存微电子器件进一步微型化的极限,当微电子器件进一步微型化时必须要考虑上述的量子效应。例如,在制造半导体集成电路时,当电路的尺寸接近电子波长时,电子就通过隧道效应而溢出器件,使器件无法正常工作,经典电路的极限尺寸大概在0.25微米。目前研制的量子共振隧穿晶体管就是利用量子效应制成的新一代器件
13、。三、几种典型的纳米材料纳米材料按照材料的形态,可将其分为四种。分别是纳米颗粒型材料、纳米固体材料、纳米膜材料、纳米磁性液体材料。纳米颗粒型材料应用时直接使用纳米颗粒的形态称为纳米颗粒型材料。被称为第四代催化剂的超微颗粒催化剂,利用甚高的比表面积与活性可以显著地提高催化效率,例如,以粒径小于0.3微米的镍和钢-锌合金的超微颗粒为主要成分制成的催化剂可使有机物氯化的效率达到传统镍催化剂的10倍;超细的铁微粒作为催化剂可以在低温将二氧化碳分解为碳和水,超细铁粉可在苯气相热分解中起成核作用,从而生成碳纤维。录音带、录像带和磁盘等都是采用磁性颗粒作为磁记录介质。随着社会的信息化,要求信息储存量大、信息
14、处理速度高,推动着磁记录密度日益提高,促使磁记录用的磁性颗粒尺寸趋于超微化。目前用金属磁粉(20纳米左右的超微磁性颗粒)制成的金属磁带、磁盘,国外已经商品化,其记录密度可达4X1064X107位/厘米(107108位/英寸),即每厘米可记录4百万至4千万的信息单元,与普通磁带相比,它具有高密度、低噪音和高信噪比等优点。超细的银粉、镍粉轻烧结体作为化学电池、燃料电池和光化学电池中的电极,可以增大与液体或气体之间的接触面积,增加电池效率,有利于电池的小型化。超微颗粒的轻烧结体可以生成微孔过滤器。例如,超微镍颗粒所制成的微孔过滤器平均孔径可达10纳米,从而可用于气体同位素、混合稀有气体、有机化合物的
15、分离和浓缩,也可用于发酵、医药和生物技术中。磁性超细微粒作为药剂的载体,在外磁场的引导下集中于病患部位,利于提高药效,这方面的研究国内外均在积极地进行。采用超微金颗粒制成金溶胶,接上抗原或抗体就能进行免疫学的间接凝集试验,可用于快速诊断。有一种超微颗粒乳剂载体,极易和游散于人体内的癌细胞溶合,若用它来包裹抗癌药物,可望制成克癌“导弹”。在化学纤维制造工序中掺入铜、镍等超微金属颗粒,可以合成导电性的纤维,从而制成防电磁辐射的纤维制品或电热纤维,亦可与橡胶、塑料合成导电复合体。1991年春的海湾战争,美国执行空袭任务的F-117A型隐身战斗机,其机身外表所包覆的红外与微波隐身材料中亦包含有多种超微
16、颗粒,它们对不同波段的电磁波有强烈的吸收能力。在火箭发射的固体燃料推进剂中添加1%重量比的超微铝或镍颗粒,每克燃料的燃烧热可增加1倍。此外,超细、高纯陶瓷超微颗粒是精密陶瓷必需的原料。因此超微颗粒在国防、国民经济各领域均有广泛的应用。纳米固体材料:纳米固体材料通常指由尺寸小于15纳米的超微颗粒在高压力下压制成型,或再经一定热处理工序后所生成的致密型固体材料。纳米固体材料的主要特征是具有巨大的颗粒间界面,如5纳米颗粒所构成的固体每立方厘米将含1019个晶界,原子的扩散系数要比大块材料高10141016倍,从而使得纳米材料具有高韧性。通常陶瓷材料具有高硬度、耐磨、抗腐蚀等优点,但又具有脆性和难以加
17、工等缺点,纳米陶瓷在一定的程度上却可增加韧性,改善脆性。如将纳米陶瓷退火使晶粒长大到微米量级,又将恢复通常陶瓷的特性,因此可以利用纳米陶瓷的特性对陶瓷进行挤压与轧制加工,随后进行热处理,使其转变为通常陶瓷,或进行表面热处理,使材料内部保持韧性,但表面却显示出高硬度、高耐磨性与抗腐蚀性。电子陶瓷发展的趋势是超薄型(厚度仅为几微米),为了保证均质性,组成的粒子直径应为厚度的1%左右,因此需用超微颗粒为原材料。随着集成电路、微型组件与大功率半导体器件的迅速发展,对高热导率的陶瓷基片的需求量日益增长,高热导率的陶瓷材料有金刚石、碳化硅、氮化铝等,用超微氮化铝所制成的致密烧结体的导热系数为100220瓦
18、/(K米),较通常产品高2.55.5倍。用超微颗粒制成的精细陶瓷有可能用于陶瓷绝热涡轮复合发动机,陶瓷涡轮机,耐高温、耐腐蚀轴承及滚球等。颗粒膜材料颗粒膜材料是指将颗粒嵌于薄膜中所生成的复合薄膜,通常选用两种在高温互不相溶的组元制成复合靶材,在基片上生成复合膜,当两组份的比例大致相当时。就生成迷阵状的复合膜,因此改变原始靶材中两种组份的比例可以很方便地改变颗粒膜中的颗粒大小与形态,从而控制膜的特性。对金属与非金属复合膜,改变组成比例可使膜的导电性质从金属导电型转变为绝缘体。颗粒膜材料有诸多应用。例如作为光的传感器,金颗粒膜从可见光到红外光的范围内,光的吸收效率与波长的依赖性甚小,从而可作为红外
19、线传感元件。铬-三氧化二铬颗粒膜对太阳光有强烈的吸收作用,可以有效地将太阳光转变为热能;硅、磷、硼颗粒膜可以有效地将太阳能转变为电能;氧化锡颗粒膜可制成气体-湿度多功能传感器,通过改变工作温度,可以用同一种膜有选择地检测多种气体。颗粒膜传感器的优点是高灵敏度、高响应速度、高精度、低能耗和小型化,通常用作传感器的膜重量仅为0.5微克,因此单位成本很低。超微颗粒虽有众多优点,但在工业上尚未形成较大的规模,其主要原因是价格较高,而颗粒膜的应用则不受价格因素的影响,这是超微颗粒实用化的很重要方向。4.纳米磁性液体材料磁性液体是由超细微粒包覆一层长键的有机表面活性剂,高度弥散于一定基液中,而构成稳定的具
20、有磁性的液体。它可以在外磁场作用下整体地运动,因此具有其它液体所没有的磁控特性。常用的磁性液体采用铁氧体微颗粒制成,它的饱和磁化强度大致上低于0.4特。目前研制成功的由金属磁性微粒制成的磁性液体,其饱和磁化强度可比前者高4倍。国外磁性液体已商品化,美、日、英等国均有磁性液体公司,供应各种用途的磁性液体及其器件。磁性液体的用途十分广泛。第二节纳米技术及纳米材料的应用领域由于纳米微粒的小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等使得它们在磁、光、电、敏感性等方面呈现常规材料不具备的特性。因此纳米微粒在磁性材料、电子材料、光学材料、高致密度材料的烧结、催化、传感、陶瓷增韧等方面有广阔的应用
21、前景。现将纳米材料和纳米技术的主要应用领域归纳如下。一、陶瓷增韧纳米微粒颗粒小,比表面大并有高的扩散速率,因而用纳米粉体进行烧结,致密化的速度快,还可以降低烧结温度,目前材料科学工作者都把发展纳米高效陶瓷作为主要的奋斗目标,在实验室已获得一些结果。从应用的角度发展高性能纳米陶瓷最重要的是降低纳米粉体的成本,在制备纳米粉体的工艺上,除了保证纳米粉体的质量,做到尺寸和分布可控,无团聚,能控制颗粒的形状,还要求生产量大,这将为发展新型纳米陶瓷奠定良好的基础。近两年来,科学工作者为了扩大纳米粉体在陶瓷改性中的应用,提出了纳米添加使常规陶瓷综合性能得到改善的想法。二、磁性材料方面的应用1.巨磁电阻材料磁
22、性金属和合金一般都有磁电阻现象,所谓磁电阻是指在一定磁场下电阻改变的现象,人们把这种现象称为磁电阻。所谓巨磁阻就是指在一定的磁场下电阻急剧减小,一般减小的幅度比通常磁性金属与合金材料的磁电阻数值约高10余倍。巨磁电阻效应是近10年来发现的新现象。2新型的磁性液体和磁记录材料1963年,美国国家航空与航天局的帕彭首先采用油酸为表面活性剂,把它包覆在超细的Fe3O4微颗粒上(直径约为10nm),并高度弥散于煤油(基液)中,从而形成一种稳定的胶体体系。在磁场作用下,磁性颗粒带动着被表面活性剂所包裹着的液体一起运动,因此,好像整个液体具有磁性,于是,取名为磁性液体。生成磁性液体的必要条件是强磁性颗粒要
23、足够小,以致可以削弱磁偶极矩之间的静磁作用,能在基液中作无规则的热运动。例如对铁氧体类型的微颗粒,大致尺寸为10nm,对金属微颗粒,通常大于6nm。在这样小的尺寸下,强磁性颗粒已丧失了大块材料的铁磁或亚铁磁性能,而呈现没有磁滞现象的超顺磁状态,其磁化曲线是可逆的。为了防止颗粒间由于静磁与电偶矩的相互作用而聚集成团,产生沉积,每个磁性微颗粒的表面必需化学吸附一层长链的高分子(称为表面活性剂),高分子的链要足够长,以致颗粒接近时排斥力应大于吸引力。此外,链的一端应和磁性颗粒产生化学吸附,另一端应和基液亲和,分散于基液中。由于基液不同,可生成不同性能、不同应用领域的磁性液体,如水基、煤油基、短基、二
24、醋基、聚苯基、硅油基、氟碳基等。磁性液体的主要特点是在磁场作用下可以被磁化,可以在磁场作用下运动,但同时它又是液体,具有液体的流动性。在静磁场作用下,磁性颗粒将沿着外磁场方向形成一定有序排列的团链簇,从而使得液体变为各向异性的介质。当光波、声波在其中传播时(如同在各向异性的晶体中传播一样),会产生光的法拉第旋转、双折射效应、二向色性以及超声波传播速度与衰减的各向异性。此外,磁性液体在静磁场作用下,介电性质亦会呈现各向异性。这些有别于通常液体的奇异性质,为若干新颖的磁性器件的发展奠定了基础。利用磁性液体可以被磁控的特性,人们利用环状永磁体在旋转轴密封部件产生一环状的磁场分布,从而可将磁性液体约束
25、在磁场之中而形成磁性液体的“O”形环,且没有磨损,可以做到长寿命的动态密封。这也是磁性液体较早、较广泛的应用之一。此外,在电子计算机中为防止尘埃进入硬盘中损坏磁头与磁盘,在转轴处也已普遍采用磁性液体的防尘密封。在精密仪器的转动部分,如X射线衍射仪中的转靶部分的真空密封,大功率激光器件的转动部件,甚至机械人的活动部件亦采用磁性液体密封法。此外,单晶炉提拉部位、真空加热炉等有关部件的密封等,磁性液体是较为理想动态密封方式之一。通常润滑剂易损耗、易污染环境。磁性液体中的磁性颗粒尺寸仅为10nm,因此,不会损坏轴承,而基液亦可用润滑油,只要采用合适的磁场就可以将磁性润滑油约束在所需的部位。增进扬声器功
26、率。在音圈与磁铁间隙处滴入磁性液体,由于液体的导热系数比空气高56倍,从而使得在相同条件下功率可以增加1倍。磁性液体的添加对频响曲线的低频部分影响较大,通常根据扬声器的结构,选用合适粘滞性的磁性液体,可使扬声器具有较佳的频响曲线。作阻尼器件。磁性液体具有一定的粘滞性,利用此特性可以阻尼掉不希望的系统中所产生的振荡模式。例如,步进电机是用来将电脉冲转换为精确的机械运动,其特点是迅速地被加速或减速,因此,常导致系统呈振荡状态。为了消除振荡而变为平滑的运动,仅需将少量磁性液体注入磁极的间隙中,在磁场作用下磁性液体自然地定位于转动部位。磁性液体被磁化后相当于增加磁压力,以致在磁性液体中的物体将会浮起,
27、好像磁性液体的视密度在随着磁场增加而增大。利用此原理可以设计出磁性液体比重计,磁性液体对不同比重的物体进行比重分离,控制合适的磁场强度可以使低于某密度值的物体上浮,高于此密度的物体下沉,原则上可以用于矿物分离。例如,使高密度的金与低密度的砂石分离,亦可用于城市废料中金属与非金属的分离。磁性液体还有其它许多用途,如仪器仪表中的阻尼器、无声快速的磁印刷、磁性液体发电机、医疗中的造影剂等等,不再一一例举,今后还可开拓出更多的用途。用作磁记录材料。近年来各种信息量飞速增加,需要记录的信息量也不断增加,要求记录材料高性能化,特别是记录高密度化。高记录密度的记录材料与超微粒有密切的关系。例如,要求每1cm
28、2可记录1000万条以上信息,那么,一条信息要求被记录在110mm2中,至少具有300阶段分层次的记录,在110mm2中至少必须要有300个记录单位。若以超微粒作记录单元,会使记录密度大大提高。磁性纳米微粒由于尺寸小,具有单磁畴结构、矫顽力很高的特性,用它制作磁记录材料可以提高信噪比、改善图像质量。作为磁记录单位的磁性粒子的大小必须满足以下要求:颗粒的长度应远小于记录波长;粒子的宽度(如可能,长度也包括在内)应该远小于记录深度;一个单位的记录体积中,尽可能有更多的磁性粒子。磁性纳米微粒除了上述应用外,还可作光快门、光调节器(改变外磁场,控制透光量)、激光磁艾滋病毒检测仪等仪器仪表、抗癌药物磁性
29、载体、细胞磁分离介质材料、复印机墨粉材料以及磁墨水和磁印刷等。三、纳米材料在催化领域的应用纳米微粒由于尺寸小,表面所占的体积百分数大,表面的键态和电子态与颗粒内部不同,表面原子配位不全等导致表面的活性位置增加,这就使它具备了作为催化剂的基本条件。最近,关于纳米微粒表面形态的研究指出,随着粒径的减小,表面光滑程度变差,形成了凸凹不平的原子台阶,这就增加了化学反应的接触面。有人预计超微粒子催化剂在21世纪很可能成为催化反应的主要角色。尽管纳米级的催化剂还主要处于实验室阶段,尚未在工业上得到广泛的应用,但是它的应用前途方兴未艾。催化剂的作用主要可归结为三个方面:一是提高反应速度,增加反应效率;二是决
30、定反应路径,有优良的选择性,例如只进行氢化、脱氢反应,不发生氢化分解和脱水反应;三是降低反应温度。纳米粒子作为催化剂必须满足上述的条件。近年来科学工作者在纳米微粒催化剂的研究方面已取得一些成果,显示了纳米粒子催化剂的优越性。高铬酸钾粉可以作为炸药的有效催化剂,以粒径小于0.3mm的Ni和Cu-Zn合金的超细微粒为主要成分制成的催化剂,可使有机物氢化的效率是传统镍催化剂的10倍,超细Pt粉、WC粉是高效的氢化催化剂。超细的Fe、Ni与Y-Fe2O3混合轻烧结体可以代替贵金属而作为汽车尾气净化剂;超细Ag粉,可以作为乙烯氧化的催化剂;超细Fe粉,可在QH6气相热分解(100011000C)中起成核
31、的作用而生成碳纤维。Au超微粒子固载在Fe2O3、Co3O4、NiO中,在70C时就具有较高的催化氧化活性。近年来发现一系列金属超微颗粒沉积在冷冻的饶腔基质上,特殊处理后将具有断裂C-C键或加成到C-H键之间的能力。例如Fe和Ni微颗粒可生成Mx-CyHz组成的准金属有机粉末,该粉末对催化氢化具有极高的活性。纳米Ti在可见光的照射下对碳氢化合物也有催化作用,利用这样一个效应可以在玻璃、陶瓷和瓷砖的表面涂上一层纳米TiO2薄层,有很好的保洁作用,日本东京已有人在实验室研制成功自洁玻璃和自洁瓷砖。这种新产品的表面有一薄层纳米TiO2,在光的照射下任何粘污在表面上的物质,包括油污、细菌在光的照射下由
32、纳米TiO2的催化作用,使这些碳氢化合物物质进一步氧化变成气体或者很容易被擦掉的物质。纳米TiO2光致催化作用给人们带来了福音,高层建筑的玻璃、厨房容易粘污的瓷砖的保洁都可以很容易地进行。日本已经制备出保洁瓷砖,装饰了一家医院的墙壁,经使用证明,这种保洁瓷砖有明显的杀菌作用。目前,关于纳米粒子的催化剂有以下几种,即金属纳米粒子催化剂,主要以贵金属为主,如Pt、Rh、Ag、Pd,非贵金属还有Ni、Fe、Co等。第二种以氧化物为载体,把粒径为110nm的金属粒子分散到这种多孔的衬底上。衬底的种类很多,有氧化铝、氧化硅、氧化镁、氧化钛、沸石等。第二种是碳化钨、Y-A12O3、Y-Fe2O3等纳米粒聚
33、合体或者是分散于载体上。1金属纳米粒子的催化作用贵金属纳米粒子作为催化剂已成功地应用到高分子高聚物的氢化反应上,例如纳米粒子铑在氢化反应中显示了极高的活性和良好的选择性。烯烃双键上往往连有尺寸较大的基团,致使双键很难打开,若加上粒径为lnm的铑微粒,可使打开双键变得容易,使氢化反应顺利进行。2带有衬底的金属纳米粒子催化剂这种类型催化剂用途比较广泛,一般采取化学制备法,概括起来有以下几种:浸入法。将金属的纳米粒子(2nm)均匀分散到溶剂中,再将多孔的氧化物衬底浸入该溶剂中使金属纳米粒子沉积在上面,然后取出。这种方法仅适用于衬底上含有少量纳米粒子的情况。例如用这种方法制备的n-RhA12O3中铑的
34、含量仅占1。离子交换法这种方法的基本过程是将衬底(沸石、SiO2等)表面处理使活性极强的阳离子(如H+、Na+等)附着在表面上,再将衬底放入含有复合离子的溶液中。复合阳离子有Pt(NH3)24+,Rh(NH3)5C12+等,由于发生了置换反应,即衬底上的活性阳离子取代了复合阳离子中的贵金属离子,这样在衬底的表面上形成了贵金属的纳米粒子。吸附法把衬底放入含有Rb6(CO)6、Ru3(CO)l2等聚合体的有机溶剂中,将吸附在衬底上的聚合体进行分解,还原处理,就在衬底上形成了粒径约lnm的金属纳米粒子。蒸发法这种方法是将纯金属在惰性气体中加热蒸发,形成纳米粒子,直接附着在催化剂衬底上。此方法的优点是
35、纯度高、尺寸可控。醇盐法将金属的乙二醇盐与含有衬底元素的醇盐混合,首先形成溶胶,然后使其凝胶化、熔烧、还原形成了金属纳米粒子,并分散在衬底材料中。这里还应指出的是,有的纳米粒子合金的活性远远高于常规催化剂的活性,它们对高分子的氢化还原和聚合反应有良好的催化作用。例如:n-Co-Mn/SiO2,对乙烯的氢化反应显示出高活性,n-Pt-Mo/沸石在丁烷氢化分解反应中其催化作用远远高于传统催化剂。金属纳米粒子催化剂还有一个使用寿命问题,特别是在工业生产上要求催化剂能重复使用,因此催化剂的稳定性尤为重要。在这方面金属纳米粒子催化剂目前还不能满足上述要求,如何避免金属纳米粒子在反应过程中由于温度的升高、
36、颗粒长大还有待进行研究。3半导体纳米粒子的光催化半导体的光催化效应发现以来,一直引起人们的重视,原因在于这种效应在环保、水质处理、有机物降解、失效农药降解等方面有重要的应用。近年来,人们一直致力于寻找光活性好、光催化效率高、经济价廉的材料,特别是对太阳敏感的材料,以便利用光催化开发新产品,扩大应用范围。所谓半导体的光催化效应是指:在光的照射下,价带电子跃迁到导带,价带的孔穴把周围环境中的羟基电子夺过来,短基变成自由基,作为强氧化剂将物质氧化,变化如下:酯醇醛酸CO2,完成了对有机物的降解。具有这种光催化半导体的能隙既不能太宽,也不能太窄,对太阳光敏感的具有光催化特性的半导体能隙一般为1.93.
37、1eV。纳米半导体比常规半导体光催化活性高得多,原因在于:由于量子尺寸效应使其导带和价带能级变成分立能级,能隙变宽,导带电位变得更负,而价带电位变得更正。这意味着纳米半导体粒子具有更强的氧化和还原能力。纳米半导体粒子的粒径小,比粗颗粒更容易通过扩散从粒子内迁移到表面,有利于得或失电子,促进氧化和还原反应。常用的光催化半导体纳米粒子有TiO2(锐铁矿相)、Fe2O3、CdS、ZnS、PbS、PbSe、ZnFe2O4等。主要用处:将这类材料做成空心小球,浮在含有有机物的废水表面上,利太阳光可进行有机物的降解。美国、日本利用这种方法对海上石油泄露造成的污染进行处理。采用这种方法还可以将粉体添加到陶瓷
38、釉料中,使其具有保洁杀菌的功能,也可以添加到人造纤维中制成杀菌纤维。锐钛矿白色纳米TiO2粒子表面用Cu+、Ag+离子修饰,杀菌效果更好。这种材料在电冰箱、空调、医疗器械、医院手术室装修等方面有着广泛的应用前景。铅化的TiO2纳米粒子的光催化可以使丙炔与水蒸气反应,生成可燃性的甲烷、乙烷和丙烷;铂化的TiO2纳米粒子,通过光催化使醋酸分解成甲烷和CO2。还有一个重要的应用是,纳米TiO2光催化效应可以用来从甲醇水溶液中提取H2。4纳米金属、半导体粒子的热催化金属纳米粒子十分活泼,可以作为助燃剂在燃料中使用。也可以掺杂到高能密度的材料,如炸药,增加爆炸效率;也可以作为引爆剂进行使用。为了提高热燃
39、烧效率,将金属纳米粒子和半导体纳米粒子掺杂到燃料中,以提高燃烧的效率,因此这类材料在火箭助推器和煤中作助燃剂。目前,纳米Ag和Ni粉已被用在火箭燃料作助燃剂。四、纳米材料在光学方面的应用纳米微粒由于小尺寸效应使它具有常规大块材料不具备的光学特性,如光学非线性、光吸收、光反射、光传输过程中的能量损耗等,都与纳米微粒的尺寸有很强的依赖关系。研究表明,利用纳米微粒的特殊的光学特性制成的各种光学材料将在日常生活和高技术领域得到广泛的应用。目前关于这方面研究还处在实验室阶段,有的得到了推广应用。下面简要介绍一下各种纳米微粒在光学方面的应用。1红外反射材料纳米微粒用于红外反射材料上主要制成薄膜和多层膜来使
40、用。结构上,导电膜最简单,为单层膜,成本低。金属-电介质复合膜和电介质多层膜均属于层膜,成本稍高。在性能上,金属-电介质复合膜红外反射性能最好,耐热度在2000C以下。电介质多层膜红外反射性良好并且可在很高的温度下使用(900C)。导电膜虽然有较好的耐热性能,但其红外反射性能稍差。纳米微粒的膜材料在灯泡工业上有很好的应用前景。高压钠灯以及各种用于拍照、摄影的碘弧灯都要求强照明,但是电能的69转化为红外线,这就表明有相当多的电能转化为热能被消耗掉,仅有一少部分转化为光能来照明。同时,灯管发热也会影响灯具的寿命。如何提高发光效率,增加照明度一直是亟待解决的关键问题,纳米微粒的诞生为解决这个问题提供
41、了一个新的途径。20世纪80年代以来,人们用纳米SiO2和纳米TiO2微粒制成了多层干涉膜,总厚度为微米级,衬在有灯丝的灯泡罩的内壁,结果不但透光率好,而且有很强的红外线反射能力。有人估计这种灯泡亮度与传统的卤素灯相同时,可节省约15的电。2优异的光吸收材料纳米微粒的量子尺寸效应等使它对某种波长的光吸收带有蓝移现象。纳米微粒粉体对各种波长光的吸收带有宽化现象。纳米微粒的紫外吸收材料就是利用这两个特性。通常的纳米微粒紫外吸收材料是将纳米微粒分散到树脂中制成膜这种膜对紫外有吸收能力依赖于纳米粒子的尺寸和树脂中纳米粒子的掺加量和组分。目前,对紫外吸收好的几种材料有:3040nm的TiO2纳米粒子的树
42、脂膜;Fe2O3纳米微粒的聚酯树脂膜。前者对400nm波长以下的紫外光有极强的吸收能力,后者对600nm以下的光有良好的吸收能力,可用作半导体器件的紫外线过滤器。最近发现,纳米A12O3粉体对250nm以下的紫外光有很强的吸收能力,这一特性可用于提高日光灯管使用寿命上。我们知道,日光灯管是利用水银的紫外谱线来激发灯管壁的荧光粉导致高亮度照明。一般来说,185nm的短波紫外光对灯管的寿命有影响,而且灯管的紫外线泄漏对人体有损害,这一关键问题一直是困扰日光灯管工业的主要问题。如果把几个纳米的A12O3粉掺合到稀土荧光粉中,利用纳米紫外吸收的蓝移现象有可能吸收掉这种有害的紫外光,而且不降低荧光粉的发
43、光效率,在这方面的试验工作正在进行。目前,用纳米微粒与树脂结合用于紫外吸收的例子是很多的。例如,防晒油、化妆品中普遍加入纳米微粒。我们知道,大气中的紫外线主要是在300400nm波段,太阳光对人体有伤害的紫外线也是在此波段。防晒油和化妆品中就是要选择对这个波段有强吸收的纳米微粒。最近研究表明,纳米TiO2、纳米ZnO、纳米SiO2、纳米A12O3、纳米云母都有在这个波段吸收紫外光的特征。这里还需要强调一下,纳米添加时颗粒的粒径不能太小,否则会将汗毛孔堵死,不利于身体健康。而粒径太大,紫外吸收又会偏离这个波段。为了解决这个问题,应该在具有强紫外吸收的纳米微粒表面包敷一层对身体无害的高聚物,将这种
44、复合体加入防晒油和化妆品中,既发挥了纳米颗粒的作用,又改善了防晒油的性能。塑料制品在紫外线照射下很容易老化变脆,如果在塑料表面涂上一层含有纳米微粒的透明涂层,这种涂层对300400nm范围有较强的紫外吸收性能,这样就可以防止塑料老化。汽车、舰船的表面上都需涂上油漆,特别是底漆主要是由氯丁橡胶、双酚树脂或者环氧树脂为主要原料,这些树脂和橡胶类的高聚物在阳光的紫外线照射下很容易老化变脆,致使油漆脱落,如果在面漆中加入能强烈吸收紫外线的纳米微粒就可起到保护底漆的作用。因此研究添加纳米微粒使之具有紫外吸收功能的油漆是十分重要的。红外吸收材料在日常生活和国防上都有重要的应用前景。一些经济比较发达的国家已
45、经开始用具有红外吸收功能的纤维制成军服供部队使用,这种纤维对人体释放的红外线有很好的屏蔽作用。众所周知,人体释放的红外线大致在46mm的中红外频段,如果不对这个频段的红外线进行屏蔽,很容易被非常灵敏的中红外探测器所发现,尤其是在夜间人身安全将受到威胁,从这个意义上来说,研制具有对人体红外线进行屏蔽的衣服是很有必要的。而纳米微粒小,很容易填充到纤维中,在拉纤维时不会堵喷头,而且某些纳米微粒具有很强的吸收中红外频段的特性。纳米A12O3、纳米TiO2、纳米SiO2和纳米Fe2O3的复合粉就具有这种功能。纳米添加的纤维还有一个特性,就是对人体红外线有强吸收作用,这就可以增加保暖作用,减轻衣服的重量。
46、有人估计用添加红外吸收纳米粉的纤维做成的衣服,其重量可以减轻30。3.隐身材料“隐身”这个名词,顾名思义就是隐蔽的意思。近年来,随着科学技术的发展,各种探测手段越来越先进。例如,用雷达发射电磁波可以探测飞机;利用红外探测器也可以发现放射红外线的物体。当前,世界各国为了适应现代化战争的需要,提高在军事对抗中的实力,也将隐身技术作为一个重要研究对象,其中隐身材料在隐身技术中占有重要的地位。1991年海湾战争中,美国第一天出动的战斗机就躲过了伊拉克严密的雷达监视网,迅速到达首都巴格达上空,直接摧毁了电报大楼和其它军事目标,在历时42天的战斗中,执行任务的飞机达1270架次,使伊军95的重要军事目标被
47、毁,而美国战斗机却无一架受损。这场高技术的战争一度使世界震惊。为什么伊拉克的雷达防御系统对美国战斗机束手无策?为什么美国的导弹击中伊拉克的军事目标如此准确?空对地导弹击中伊拉克的坦克为什么有极高命中率?一个重要的原因就是美国战斗机F-117A型机身表面包覆了红外与微波隐身材料,它具有优异的宽频带微波吸收能力,可以逃避雷达的监视。而伊拉克的军事目标和坦克等武器没有防御红外线探测的隐身材料很容易被美国战斗机上灵敏红外线探测器所发现,通过先进的激光制导武器很准确地击中目标。美国F-117A型飞机蒙皮上的隐身材料就含有多种超微粒子,它们对不同波段的电磁波有强烈的吸收能力。为什么超微粒子,特别是纳米粒子
48、对红外和电磁波有隐身作用呢?主要原因有两点:一方面由于纳米微粒尺寸远小于红外及雷达波波长,因此纳米微粒材料对这种波的透过率比常规材料要强得多,这就大大减少波的反射率,使得红外探测器和雷达接收到的反射信号变得很微弱,从而达到隐身的作用;另一方面,纳米微粒材料的比表面积比常规粗粉大34个数量级,对红外光和电磁波的吸收率也比常规材料大得多,这就使得红外探测器及雷达得到的反射信号强度大大降低,因此很难发现被探测目标,起到了隐身作用。目前,隐身材料虽在很多方面都有广阔的应用前景,但当前真正发挥作用的隐身材料大多使用在航空航天与军事有密切关系的部件上。对于上天的材料有一个要求是重量轻,在这方面纳米材料是有
49、优势的,特别是由轻元素组成的纳米材料在航空隐身材料方面应用十分广泛。有几种纳米微粒很可能在隐身材料上发挥作用,例如纳米氧化铝、氧化铁、氧化硅和氧化钛的复合粉体与高分子纤维结合,对中红外波段有很强的吸收性能,这种复合体对这个波段的红外探测器有很好的屏蔽作用。纳米磁性材料,特别是类似铁氧体的纳米磁性材料放入涂料中,既有优良的吸波特性,又有良好的吸收和耗散红外线的性能,加之比重轻,在隐身方面的应用上有明显的优越性。另外,这种材料还可以与驾驶舱内信号控制装置相配合,通过开关发出干扰,改变雷达波的反射信号,使波形畸变,或者使波形变化不定,能有效地干扰、迷惑雷达操纵员,达到隐身目的。纳米级的硼化物、碳化物
50、,包括纳米纤维及纳米碳管在隐身材料方面的应用也将大有作为。五、纳米技术与纳米材料在环境保护方面的作用1纳米技术在治理有害气体方面的应用大气污染一直是各国政府需要解决的难题,空气中超标的二氧化硫(S02)、一氧化碳(CO)和氮氧化物(NOx)是影响人类健康的有害气体,纳米材料和纳米技术的应用能够最终解决产生这些气体的污染源问题。工业生产中使用的汽油、柴油以及作为汽车燃料的汽油、柴油等,由于含有硫的化合物在燃烧时会产生SO2气体,这是SO2的最大污染源。所以石油提炼工业中有一道脱硫工艺以降低其硫的含量。纳米钛酸钻(CoTiO3)是一种非常好的石油脱硫催化剂。以55-70nm的钛酸钻作为催化载体一多
51、孔硅胶或A12O3陶瓷作为载体的催化剂,其催化效率极高。经它催化的石油中硫的含量小于0.01,达到国际标准。工业生产中使用的煤燃烧也会产生SO2气体,如果在燃烧的同时加入一种纳米级助烧催化剂不仅可以使煤充分燃烧,不产生一氧化碳气体,提高能源利用率,而且会使硫转化成固体的硫化物,而不产生二氧化硫气体,从而杜绝有害气体的产生。最新研究成果表明,复合稀土化物的纳米级粉体有极强的氧化还原性能,这是其它任何汽车尾气净化催化剂所不能比拟的。它的应用可以彻底解决汽车尾气中一氧化碳(CO)和氮氧化物(NOx)的污染问题。以活性碳作为载体、纳米Zr0.5Ce0.5O2粉体为催化活性体的汽车尾气净化催化剂,由于其
52、表面存在Zr4+/Zr3+及Cr4+/Cr3+,电子可以在其三价和四价离子之间传递,因此具有极强的电子得失能力和氧化还原性,再加上纳米材料比表面大、吸附能力强,因此它在氧化一氧化碳的同时还原氮氧化物,使它们转化为对人体和环境无害的气体二氧化碳和氮气。而更新一代的纳米催化剂,将在汽车发动机汽缸里发挥催化作用,使汽油在燃烧时就不产生CO和NOx,无需进行尾气净化处理。2纳米技术在污水处理方面的应用污水中通常含有有毒有害物质、悬浮物、泥沙、铁锈、异味污染物、细菌病毒等。污水治理就是将这些物质从水中去除。由于传统的水处理方法效率低、成本高、存在二次污染等问题,污水治理一直得不到很好解决。纳米技术的发展
53、和应用很可能彻底解决这一难题。污水中的贵金属是对人体极其有害的物质。它从污水中流失,也是资源的浪费。新的一种纳米技术可以将污水中的贵金属如金、钌、钯、铂等完全提炼出来,变害为宝。一种新型的纳米级净水剂具有很强的吸附能力。它的吸附能力和絮凝能力是普通净水剂三氯化铝的1020倍。因此它能将污水中悬浮物完全吸附并沉淀下来,先使水中不含悬浮物,然后采用纳米磁性物质、纤维和活性炭的净化装置,能有效地除去水中的铁锈、泥沙以及异味等污染物。经前二道净化工序后,水体清澈,没有异味,口感也较好。再经过带有纳米孔径的特殊水处理膜和带有不同纳米孔径的陶瓷小球组装的处理装置后,可以将水中的细菌、病毒100去除,得到高
54、质量的纯净水,完全可以饮用。这是因为细菌、病毒的直径比纳米大,在通过纳米孔径的膜和陶瓷小球时,就会被过滤掉,水分子及水分子直径以下的矿物质、元素则保留下来。该技术在医学领域血透中已开始应用,有“体外肾脏”之称。肝、肾功能衰竭者饮用这种水后,会大大减轻肝、肾脏的负担。3纳米TiO2与环境保护由于纳米TiO2除了具有纳米材料的特点外,还具有光催化性能,使得它在环境污染治理方面将扮演极其重要的角色。(1)降解空气中的有害有机物近年来,随着室内装潢涂料油漆用量的增加,室内空气污染越来越受到人们的重视。调查表明,新装修的房间内空气中有机物浓度高于室外,甚至高于工业区。目前已从空气中鉴定出几百种有机物质,
55、其中有许多物质对人体有害,有些是致癌物。对室内主要的气体污染物甲醛、甲笨等的研究结果表明,光催化剂可以很好地降解这些物质,其中纳米TiO2的降解效率最好,将近达到100。其降解机理是在光照条件下将这些有害物质转化为二氧化碳、水和有机酸。纳米TiO2的光催化剂也可用于石油、化工等产业的工业废气处理,改善厂区周围空气质量。(2)降解有机磷农药有机磷农药是70年代发展起来的农药品种,占我国农药产量的80,它的生产和使用会造成大量有毒废水。这一环保难题,使用纳米TiO2来催化降解可以得到根本解决。(3)处理毛纺染整废水用纳米TiO2催化降解技术来处理毛纺染整废水,具有省资、高效、节能,最终能使有机物完
56、全矿化、不存在二次污染等特点,显示出良好的应用前景。(4)解决石油污染问题在石油开采运输和使用过程中,有相当数量的石油类物质废弃在地面、江湖和海洋水面,用纳米TiO2可以降解石油,解决海洋的石油污染问题。(5)处理城市生活垃圾用纳米TiO2可以加速城市生活垃圾的降解,其速度是大颗粒TiO2的10倍以上,从而解决大量生活垃圾给城市环境带来的压力。6)高效的杀菌剂一般常用的杀菌剂Ag、Cu等能使细胞失去活性,但细菌被杀死后,可释放出致热和有毒的组分如内毒素。内毒素是致命物质,可引起伤寒、霍乱等疾病。利用纳米TiO2的光催化性能不仅能杀死环境中的细菌,而且能同时降解由细菌释放出的有毒复合物。在医院的
57、病房、手术室及生活空间细菌密集场所安放纳米TiO2光催化剂还具有除臭作用。(7)自洁作用纳米TiO2由于其表面具有超亲水性和超亲油性,因此其表面具有自清洁效应,即其表面具有防污、防雾、易洗、易干等特点。如将TiO2玻璃镀膜置于水蒸气中,玻璃表面会附着水雾,紫外线光照射后,表面水雾消失,玻璃重又变得透明。在汽车挡风玻璃、后视镜表面镀上TiO2薄膜,可防止镜面结雾。实验表明,镀有纳米TiO2薄膜的表面与未镀TiO2薄膜的表面相比,前者显示出高度的自清洁效应。一旦这些表面被油污等污染,因其表面具有超亲水性,污染不易在表面附着,附着的少量污物在外部风力、水淋冲力、自重等作用下,也会自动从TiO2表面剥
58、离下来,阳光中的紫外线足以维持TiO2的薄膜表面的亲水特性,从而使其表面具有长期的自洁去污效应。这一特性的开发利用将改变人们对涂层功能的认识,从而给涂层材料带来新的革命。今后将广泛应用于汽车表面涂层、建筑物玻璃外墙等。由于纳米TiO2光催化剂具有良好的化学稳定性、抗磨损性能好、成本低、制备的薄膜透明等优点,已成为目前最引人注目的环境净化材料,更重要的是能直接利用太阳光、太阳能、普通光源来净化环境。总之,随着纳米材料和纳米技术基础研究的深入和实用化进程的发展,特别是纳米技术与环境保护和环境治理进一步有机结合,许多环保难题诸如大气污染、污水处理、城市垃圾等将会得到解决。我们将充分享受纳米技术给人类
59、带来的洁净环境。六、纳米材料在其它方面的应用纳米材料在其它方面也有广阔的应用前景。美国、英国等国家已制备成功纳米抛光液,并有商品出售。常规的抛光液是将不同粒径的无机小颗粒放入基液制成抛光剂,广泛用于金相抛光、高级照像镜头抛光、高级晶体抛光以及岩石抛光等。最细的颗粒尺寸一般在微米到亚微米级。随着高技术的飞快发展,要求晶体的表面有更高的光洁度,这就要求抛光剂中的无机小颗粒越来越细,分布越来越窄。纳米微粒为实现这个目标提供了基础。据报道,目前已成功制备出纳米A103,纳米CrO3、纳米SiO2的悬浮液,并用于高级光学玻璃、石英晶体及各种宝石的抛光,纳米抛光液发展的前景方兴未艾。纳米静电屏蔽材料用于家
60、用电器和其他电器的静电屏蔽具有良好的作用。一般的电器外壳都是由树脂加碳黑的涂料喷涂而形成的一个光滑表面,由于碳黑有导电作用,因而表面的涂层就有静电屏蔽作用。如果不能进行静电屏蔽,电器的信号就会受到外部静电的严重干扰。例如,人体接近屏蔽效果不好的电视机时,人体的静电就会对电视图像产生严重的干扰。为了改善静电屏蔽涂料的性能,日本松下公司已研制成功具有良好静电屏蔽的纳米涂料,所应用的纳米微粒有Fe2O3、TiO2、Cr2O3、ZnO等。这些具有半导体特性的纳米氧化物粒子在室温下具有比常规的氧化物高的导电特性,因而能起到静电屏蔽作用,同时氧化物纳米微粒的颜色不同,TiO2、SiO2纳米粒子为白色,Cr
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 园区道路拆除专项施工方案(3篇)
- 2025年河南省职教高考《语文》核心考点必刷必练试题库(含答案)
- 2025年河北司法警官职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年江西农业工程职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年梧州职业学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 2025科学仪器行业市场机会与发展动向
- 中班主题教学设计活动方案五篇
- 美国技术转让合同
- 智慧养老的趋势与应用
- 消毒服务合同范文
- 2025年山西国际能源集团限公司所属企业招聘43人高频重点提升(共500题)附带答案详解
- 青海省海北藏族自治州(2024年-2025年小学六年级语文)统编版随堂测试(上学期)试卷及答案
- 外研版(三起)小学英语三年级下册Unit 1 Animal friends Get ready start up 课件
- 江苏省无锡市2023-2024学年高三上学期期终教学质量调研测试语文试题(解析版)
- 铜矿隐蔽致灾普查治理工作计划
- 《民航安全检查(安检技能实操)》课件-第一章 民航安全检查员职业道德
- DB34T4826-2024畜禽养殖业污染防治技术规范
- 腰麻课件教学课件
- 石油化工企业环境保护管理制度预案
- 2024年甘肃省高考历史试卷(含答案解析)
- 2024年山东省烟台市初中学业水平考试地理试卷含答案
评论
0/150
提交评论