人教A版数学选修23212离散型随机变量的分布列(二)超几何分布版课件_第1页
人教A版数学选修23212离散型随机变量的分布列(二)超几何分布版课件_第2页
人教A版数学选修23212离散型随机变量的分布列(二)超几何分布版课件_第3页
人教A版数学选修23212离散型随机变量的分布列(二)超几何分布版课件_第4页
人教A版数学选修23212离散型随机变量的分布列(二)超几何分布版课件_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2.1.2 离散型随机变量的分布列(二)人教A版选修2-3 第二章1.进一步学习求随机变量分布列;2.掌握离散型随机变量超几何分布列;3.理解有放回与不放回抽取概率的联系与区别;4.了解超几何分布与其它分布的联系。 本课主要学习离散型随机变量超几何分布列。以复习引入,通过典例探究例题1,引出离散型随机变量超几何分布概念,通过典例探究例题2第一问进一步巩固超几何分布,通过典例探究例题2第二问引出有放回抽取与无放回抽取问题,引导学生区分两种不同抽取方法的分布列问题。拓展引出超几何分布与概率中其它分布之间的联系。通过例3进一步巩固求离散性随时机变量分布列思路与方法。 本节课重点是离散型随机变量超几何

2、分布列概念,难点是求超几何分布列。取每一个值 的概率 x1x2xipp1p2pi称为随机变量x的概率分布列,简称x的分布列.则称表1.设离散型随机变量可能取的值为2.离散性随机变量分布列性质:离散型随机变量的分布列3.两点分布解:(1)由于从 100 件产品中任取3 件的结果数为 ,从100 件产品中任取3件,其中恰有k 件次品的结果数为 ,那么从 100 件产品中任取 3 件,其中恰有 k 件次品的概率为.所以随机变量 X 的分布列是X0123P例1:在含有5件次品的100件产品中,任取3件,试求: (1)取到的次品数X 的分布列; (2)至少取到1件次品的概率例2:在含有5件次品的100件

3、产品中,任取3件,试求: (1)取到的次品数X 的分布列; (2)至少取到1件次品的概率解:(1)根据随机变量X 的分布列,可得至少取到 1 件次品的概率 P ( X1 ) = P ( X = 1 ) + P ( X = 2 ) + P ( X = 3 ) 0.138 06 + 0. 005 88 + 0. 00006 = 0.14400 . (2)根据随机变量X 的分布列,可得至少取到 1 件次品的概率 P ( X1 ) = 1-P ( X 1 ) = 1-P ( X=0 ) 0.14400 . 将复杂事件的概率转化为若干互斥事件的概率和将复杂事件的概率转化为求对立事件的概率一般地,在含有M

4、 件次品的N件产品中,不放回地任取n件,其中恰有X件次品数,则事件X=k发生的概率为其中且称分布列X01 mP 为超几何分布列如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布超几何分布列例1:从一批有10个合格品与3个次品的产品中,一件一件地抽取产品,设各个产品被抽到的可能性相同,在下列两种情况下,分别求出直到取出合格品为止时所需抽取的次数的分布列分布列为:解:的所有取值为:1、2、3、4(1)每次取出的产品都不放回此批产品中;4321解:的所有取值为:1、2、3、(2)每次取出的产品都放回此批产品中;分布列为:12k例2:从一批有10个合格品与3个次品的产品中,一件

5、一件地抽取产品,设各个产品被抽到的可能性相同,在下列两种情况下,分别求出直到取出合格品为止时所需抽取的次数的分布列例题2两问有哪些区别?(1)抽取产品方法区别:放回、不放回。(2)抽到合格品概率区别:变与不变。(3)抽到合格品需抽取次数区别:有限与无限不同。 超几何分布的上述模型中,“任取m件”应理解为“不放回地一次取一件,连续取出m件”.如果是有放回地抽取,就变成了我们后面将要学习的重贝努利试验,这时概率分布就是二项分布.所以两个分布的区别就在于是不放回地抽样,还是有放回地抽样.若产品总数N 很大时,那么不放回抽样可以近似地看成有放回抽样.因此,当 时,超几何分布的极限分布就是二项分布,即有

6、如下定理.定理 如果当 时,那么当 时(不变),则由于普阿松分布又是二项分布的极限分布,于是有:超几何分布 二项分布 普阿松分布.例3:一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得1分,试写出从该盒中取出一球所得分数的分布列解:设黄球的个数为n,由题意知绿球个数为2n,红球个数为4n,盒中的总数为7n 所以从该盒中随机取出一球所得分数的分布列为101P1、掌握超几何分布列,解决一些简单问题;2、了解有放回与没有放回抽取时两都之间的区别;3、求离散型随机变量的概率分布列:

7、(1)找出随机变量的所有可能的取值(2)求出各取值的概率(3)列成表格。明确随机变量的具体取值所对应的概率事件现代人每天生活在纷繁、复杂的社会当中,紧张、高速的节奏让人难得有休闲和放松的时光。人们在奋斗事业的搏斗中深感身心的疲惫。然而,如果你细心观察,你会发现作为现代人,其实人们每天都在尽可能的放松自己,调整生活节奏,追求充实快乐的人生。看似纷繁的社会里,人们的生活方式其实也不复杂。大家在忙忙碌碌中体味着平凡的人生乐趣。由此我悟出一个道理,那就是-生活简单就是幸福。生活简单就是幸福。一首优美的音乐、一支喜爱的歌曲,会让你心境开朗。你可以静静地欣赏你喜爱的音乐,可以在流荡的旋律中回忆些什么,或者

8、什么都不去想;你可以一个人在房间里大声的放着摇滚,也可以在网上用耳麦与远方的朋友静静地共享;你还可以一边放送着音乐,一边做着家务.生活简单就是幸福。一杯清茶,或一杯咖啡,放在你的桌边,你的心情格外的怡然。你可以浏览当天的报纸,了解最新的国内外动态,哪怕是街头趣闻;或者捧一本自己喜欢的杂志、小说,从字里行间获得那种特别的轻松和愉悦.生活简单就是幸福。经过精心的烹制,一桌可心的菜肴就在你的面前,你招呼家人快来品尝,再备上最喜欢的美酒,这是多么难得的享受!生活简单就是幸福。春暖花开的季节,或是清风送爽的金秋,你和家人一起,或是朋友结伴,走出户外,来一次假日的郊游,享受大自然带给你的美丽、芬芳。吸一口

9、新鲜的空气,忘却都市的喧嚣,身心仿佛受到一番洗涤,这是一种什么样的轻松感受!生活简单就是幸福。你参加朋友们的一次聚会,那久违的感觉带给你温馨和激动,在觥酬交错之间你享受与回味真挚的友情。朋友,是那样的弥足珍贵.生活简单就是幸福。周末的夜晚,一家老小围坐在电视机旁,尽享团圆的欢乐现代人越来越会生活,越来越会用各种不同的方式来放松自己。垂钓、上网、打牌、玩球、唱卡拉OK、下棋.不一而足。人们根据自己的兴趣爱好寻找放松身心的最佳方式,在相对固定的社交圈子里怡然的生活,而且不断的扩大交往的圈子,结交新的朋友有时,你会为新添置的一套漂亮时装而快乐无比;有时,你会为孩子的一次小考成绩优异而倍感欣慰;有时,

10、你会为刚参加的一项比赛拿了名次而喜不自胜;有时,你会为完成了上司交给的一个任务而信心大增生活简单就是幸福!生活简单就是幸福,不意味着我们放弃了对目标的追逐,是在忙碌中的停歇,是身心的恢复和调整,是下一步冲刺的前奏,是以饱满的精力和旺盛的热情去投入新的“战斗”的一个“驿站”;生活简单就是幸福,不意味着我们放弃了对生活的热爱,是于点点滴滴中去积累人生,在平平淡淡中寻求充实和快乐。放下沉重的负累,敞开明丽的心扉,去过好你的每一天。生活简单就是幸福!我的心徜徉于春风又绿的江南岸,纯粹,清透,雀跃,欣喜。原来,真正的愉悦感莫过于触摸到一颗不染的初心。人到中年,初心依然,纯真依然,情怀依然,幸甚至哉。生而

11、为人,芳华刹那,真的不必太多要求,一盏茶,一本书,一颗笃静的心,三两心灵知己,兴趣爱好一二,足矣。亦舒说:“什么叫做理想生活?不用吃得太好穿得太好住得太好,但必需自由自在,不感到任何压力,不做工作的奴隶,不受名利的支配,有志同道合的伴侣,活泼可爱的孩子,丰衣足食,已经算是理想。”时间如此猝不及防,生命如此仓促,忠于自己的内心才是真正的勇敢,以不张扬的姿态,将自己活成一道独一无二的风景,才是最大的成功。试问,你有多久没有靠在门槛上看月亮了,你有多久没有在家门口的那棵大树下乘凉了,你有多久没有因为一个人一件事而心生感动了,你又有多久没有审视自己的内心了?与命运的较量中,我们被迫前行,却忘记了来时的

12、方向;我们习惯了飞翔,却成了无脚的鸟。年轻时我们并不了解自己,不知道自己需要什么。不知道什么才是自己最想要的,什么才是最适合自己的,自己又是怎么样的一个人。”时光叠加,沧桑有痕,终究懂得,漫漫人生路,得失爱恨别离,不过是生命的常态。原来,人生最曼妙的风景,就是那颗没被俗世河流污染的初心。大千世界,有很多的东西可以去热爱,或许一株风中摇曳的小草,一朵迎风招展的小花,一条弯弯曲曲的小河,都足够让我们触摸迷失的初心。紫陌红尘,芸芸众生,皆是过客。若时光允许,我愿意一生柔软,爱了樱桃,爱芭蕉,静守于轮回的渡口,揣一颗云水禅心,将寂寞坐断,将孤独守成一帧最美的山水画卷。一直渴盼着,与心悦的人相守于古朴的

13、小院,守着老旧的光阴,只闻花香,不谈悲喜,读书喝茶,不争朝夕。阳光暖一点,再暖一点,日子慢一些,再慢一些,从容而优雅地老去。浮生荡荡,阳春白雪,触目横斜千万朵,赏心不过两三枝;任凭弱水三千,只取一瓢饮。有梦的季节,有爱的润泽,走过的日子,都会成为笔尖温润如玉的诗篇。相信越是走到最后,剩下的唯有一颗向真向善向美的初心。似水流年,如花美眷,春潮带雨晚来急,野渡无人舟自横朝花夕拾,当回望过往,你是此生无憾,还是满心懊悔呢?随着芳华的流逝,我们终究会明白:任何的财富都比不上精神上的愉悦,任何的快感都不及对初心的执着。愿你不趋炎附势,不阿谀奉迎,不苟且偷生,不虚掷有限的年华,活出属于自己的风采,活在每一

14、个当下,不忘初心,不负今生曾经有人说,成大事者必经以下三种境界:“昨夜西风凋碧树,独上高楼,望尽天涯路”,此第一境界也;“衣带渐宽终不悔,为伊消得人憔悴”,此第二境界也;“众里寻他千百度,蓦然回首,那人却在灯火阑珊处”,此第三境界也。我想说的是:事无大小,只要你还在坚持,成功的曙光终会毫不吝啬地照向你有这样一个小故事。1987年,她14岁,在湖南益阳的一个小镇卖茶,1毛钱一杯。因为她的茶杯比别人大一号,所以卖得最快,那时,她总是快乐地忙碌着。她17岁,她把卖茶的摊点搬到了益阳市,并且改卖当地特有的“擂茶”。擂茶制作比较麻烦,但能卖个好价钱,她也总是忙忙碌碌。她20岁,仍在卖茶,不过卖茶的地点又

15、变了,在省城长沙,店面也由摊点变成了小店。客人进门后,必能品尝到热乎乎的香茶,在尽情享用后,他们或多或少会掏钱再带上一两袋茶叶。1997年,她24岁,长达十年的光阴,她始终在茶叶与茶水间滚打。这时,她已经拥有37家茶庄,遍布于长沙、西安、深圳、上海等地。福建安溪、浙江杭州的茶商们一提起她的名字莫不竖起大拇指。她的最大梦想实现了。“在慢慢习惯于喝咖啡的潮流下,也有洋溢着茶叶清香的茶庄出现,那就是我开的”说这句话时她已经把茶庄开到了故事虽短,内涵颇深,一件事,只有始终坚韧不拔地去做,无谓任何艰难险阻,不左右摇摆,不顾左右而言它,才能披荆斩棘,在一千次的跌倒后又一千零一次地站起来。事实上,我们在做一件事的时候,总是不自觉地放大困难,使得我们产生畏惧之心,没有了乘风破浪的豪情与气魄。困难并不可怕,可怕的是我们没有直面困难的勇气。面对着被自己放大了的困难,我们需要有的就是坚持

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论