时间序列Stata操作 题4-7_第1页
时间序列Stata操作 题4-7_第2页
时间序列Stata操作 题4-7_第3页
时间序列Stata操作 题4-7_第4页
时间序列Stata操作 题4-7_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、应用时间序列分析(第四版)王燕编著中国人民大学出版社第四章习题71974年1月至1994年12月,某地胡椒价格数据如下:(21行*12列)110211511093111811681118108511351138113512351301128312501210113510851060110211511127122612171215125012101268140214861534156715851717200220862059125012101268140214861534156715851717200220862059242523262176212120002000185016401700192

2、518501830185017901700170017501775192520001975194018891881200020241900175016491601162516091649164016401620159015261451142414241329119911791285134912651299137314401451137613251261119912191250127413651424142013851321123512151310131913191279148119562165212520871895184018741863183618942105215921312029227

3、024112652329433603686359334823615396343284309433643824326400940004070420042784435477248124908485748654711464048774902488448334903496348044679481045714250385037753357294623421994242024642763299331082729252524572136227221752100206819551950196920251726157917681766162116921634175016201515150815251502137

4、41212119811071052106910501098115011261200119310581043102698097610001210126411501117118811001040102811131154135017221616152514031497152215501575153816501800193322192606256324331检验序列的平稳性(Stata语句).dropB-T.generaten=_n.renameAprice.tssetntimevariable:n,1to252delta:1unit.tslineprice=0001price的时序图由时序图观测得p

5、rice变化落差很大,该序列不平稳。再看看自相关图:(Stata语句).acpriceeOO1ODOcirpfosnoitalerocotuCOO010203040LagBartlettsformulaforMA(q)95%confidencebandsprice的自相关图短期(延迟阶数为5期及5期以内)来看,自相关系数拖尾;长期来看,自相关系数缓慢地由正转负,一直是下降趋势。序列值之间长期相关,该序列非平稳序列。(Ps.平稳时间序列具有短期自相关性。)结合之前的时序图,发现该序列具有明显的长期趋势。考虑到price是月度数据,因此觉得该序列很有可能还存在季节效应。2检验序列的方差齐性先对原序

6、列做一阶差分:原序列具有长期趋势,所以需要平稳化。Stata语句).generateDp=D1.price.labelvariabirceleDpfirstdifferenceofirppricefoe.tslineDp=Dp的时序图(一阶)差分后序列Dp的长期趋势不再明显,平稳化效果很好。再看看Dp的自相关图:Stata语句)od-opacpDfosnoitalerocotu02nVcoo3001020LagBartlettsformulaforMA(q)95%confidencebands40Dp的自相关图由图可见,短期(5期)内瓦便衰减直逼零值,衰减速度非常快,明显具有短期自相关性。兀在

7、延迟1期以后,除了当k=30时跳出过阴影范围,其余全都落在2倍标准误的范围内,围绕着零值做很小幅(约土0.1)的波动。因此,Dp是平稳的时间序列。平稳性检验通过,看白噪声检验。自相关图明显显示:爲工0。因此,Dp非白噪声序列,有信息待提取。预处理完毕,开始识别模型:od-opDfosnoitalerocotu304001020LagBartlettsformulaforMA(q)95%confidencebandsDp的自相关图Stata语句).pacDpOtopDfosnoitalerocotualaitra0X100102030Lag95%Confidencebandsse=1/sqrt(

8、n)40Dp的偏自相关图(1)不考虑季节效应,先试ARIMA模型,再试疏系数模型。ARIMA模型HeperLderitvariatile:coastant132_D丄6UU7184811.:23677或者arimaDp,arima(1,0,1)2(1)Model2Model3by/if/ineightsSIndepeiLiiirLtvsrableE:MAIHIAfp,d,q)specification:0CIntegrated(differPs.同arimaprice,arima(1,1,1)结果ii认为瓦1阶截尾,0kk拖尾,尝试MA参数显著性检验通不过冒ama-AKXU,AEIAK,and

9、otherdARI1IAregressionModaldd.jKuJ.皀.3by/iE/in.SNijazie2EXDependentv:sriableDpImiependentv:iriablesARIMXmodtlspecificationAUMA(p.(L心specification:aoHoviiLg-averageorier(q)Au*tarazeivaord.arGJZEntegrated(differea匚亡)arder去掉截距项再试(Stata语句)arimaDp,noconstantarima(0,0,1)Ps.结果同arimaprice,noconstantarima(0,

10、1,1)得到结果白噪声检验(Stata语句).predictehat1,residual.wnteftqehat1PortmanteautestforwhitenoisePortmanteau(Q)statistic=45.3466Probchi2(40)evPs.a0.2589Loglikelihood=-1607.717Dp.Coef.OPGStd_ErrzPIzI95$Conf.IntervalBPcons5.27709512-5410.42(一石-19.31292.UCC99AJU1A1113.LI.337111.04917?76.870-000.2413205.434101/Eiai

11、oa146.35633.53735441-370-0001394233153.290.UUUUWalduhiZ|1JProbcliiZIISupTirezsconst:mtt截距项不显著AE.IMAregressionSamrile:252NumljerofobsWald口hi仝PtoLi,ch.225147.18llElLl_/Eiiama.wntestqehat1,lags(2).wntestqehat1,lags(6).wntestqehat1,lags(12)都通过了.wntestbehat1=.estaticOPGCoef-Std.Err.33S0741.0489113146419C

12、3.50909141.730.0C095%Conf.Int-erva丄139J5419433S3E5153.2913对Dp构建MA(1)模型(无截距项)成功,对残差项进行白噪声检验CumulativePeriodogramWhite-NoiseTestCO4CD0OODOOtoQNOQoo0.0000.400.50FrequencyBartletts(B)statistic=0.70ProbB=0.7145残差项是白噪声序列,计算AIC/BIC:通过了白噪声检验,但这个检验的前提是同方差I口delOhsllCm-illI11(iuoddJdt厂心-251-1607.309

13、23219.fill322.668=ii认为瓦拖尾,0kk1阶截尾,尝试AR(1)一AKIUjARIA%andotherARIHAregressionSsoiple:2-252Bependjentvtcriable弧7:BIndepindentvariables.CSuppreseconstanttAEJMAnodfiilEpeificution.(*JaAiTFIA(jIij)specslcatiqxi:Autoregiesslveorder(p)Iniegratmd(differsnce)orderMoving-Avarh.gaordbr(q)Mi.mtierdfobsWaldahi2(1

14、)Proh:匚lii225172.74O.OODODPCoat.OPG営七cl.Err.z21n|Conf.InJtDo_ccns5.10151914.382010.35foT?23-23-036733.28974arJLI.3559392.0411353H-53u.uuu.2141395.3713/sigma145.C5123.41.41D.COOUQ.7554152.507Loyliktliliood1C9C-55J截距项不显著AB.IHA.regression去掉截距项再试(Stata语句).arimaDp,noconstantarima(1,0,0)Simple:2-252NiiiLL

15、kerofobs=251WaldchiZ(1)=72.=LLLuglikelihood=-1696617ProLchi2=0.0000DpCoef.OPGStd.Err.P|3|95%Conf.lutervalansiarLI.35S875C_04173663.550.000.275D734438C778/Ei3iiia14572123.50517341.570.000138-B512152.5912对Dp构建AR(1)模型(无截距项)成功,对残差项进行白噪声检验白噪声检验(Stata语句).predictehat2,residual.wntestqehat2Portmanteautestfo

16、rwhitenoisePortmanteau(Q)statistic=mPrchi2(40)Ps.040.35160.4547.wntestqehat2,lags(2).wntmstqehat2,lags(6).wntCstqehat2,lags(12)都通过了.wntestbehat2001QDOOanoOto02nVQooStata语句)differencesn.acS12Dp=.pacS12DpSfosnoitalerocotualaitraod-o0X10coo0X10.od-o.ODO.95%Confidencebandsse=1/sqrt(n)因为前十二期(一年)内可和叮明显跳出了

17、2倍标准误范围,所以确定ma(l),ar(l),与上面i对Dp拟合ARMA(1,1)的情况一致,已经知道拟合不成了。(2)换季节模型,先试简单的加法模型,再试复杂的乘积模型。因为考虑了季节因子,这里是月度数据,所以要对一阶差分后序列进行12步差分。观察12步差分后序列的自相关系数和偏自相关系数的性质,尝试拟合季节模型。.generateD12Dp=S12.Dp.labelvaria1SbleS12Dp12stepsoftheS12Dp的偏自相关图加法季节模型i瓦1阶12阶截尾际拖尾,结合疏系数模型,对序列S12Dp拟合MA(1,12)模型ii瓦拖尾瓦1阶12阶(13阶)截尾,结合疏系数模型,对

18、序列S12Dp拟合AR(1,12)或AR(1,12,13)模型iii综合考虑瓦和兀k几阶截尾的性质(哪几期延迟期数对应的相关系数特别明显),对序列S12Dp拟合ARIMA(1,12)(1,12)模型IrLdeperLiientvariables:AEZMArTiodslspecific:=ltionModel2Model3bv/if/inWeigtitsSE/RobustReportingMaximizationDependentvai-1abl己:或者(Stata语句).arimaS12Dp,ma(1,12)=AP.IIIAregressionNluilI:ierofobsWaldchiZ(

19、2JLoglikelihood=-1551_408Prob:=chiZSlEDpCoef.OPGStd.Err.zPIzI95%Conf.IntervalS12Dp_cons-.1631442.783658-0.06匕乎啰-5.6190145.292726MJfflmaLI.1366809.06191032.210027.015339.2580225L12.-.9075633-0768C58-11.810-000-1.058217-.7569091/三igma151.32446.334823.890-000138.9084163.7404去掉截距项.arimaS12Dp,noconstantm

20、a(1,12)=AP.IMAregressioij.Saiiip1e:14-252MuiLLtierofobs=239Waldchi2(2)=167.45Loglikelihood=-1551_409Probchi2=0.0000S12DpOPGCoe.Std_Err-z|z|954Conf.IntervalAiummaLI.LIZ.13696080618162.220027.0158031258118-.9070947.07C7165-11.820.000-1.0574567567332/migma.151.3393E.32728223.920.000138-53811C3.7406.pre

21、dictehat3,residual.wntestqehat3PortmanteautestforwhitenoisePortmanteau(Q)statistic=62.1168Probchi2(40)=0.0141Q统计量的P值chi2(40)=0.0037失败I1ort-iLLiLtiteau.(QJstatis七it:=61.1895.arimaS12Dp,ar(1,12,13)在wntestq时也失败了Frot,chlZJ=00111iii对序列S12Dp拟合ARIMA(1,12)(1,12)模型Portmanteau(Q)Statistic=32.1318.arimaS12Dp,n

22、oconstantar(1,12)ma(1,12)在wntestq时也失败了Protlchi(40)=-7858序列S12Dp所具有的短期相关性和季节效应用加法模型无法充分、有效提取,这两者之间具有更复杂的关系,不妨假定为乘积关系,尝试用乘积模型来拟合序列的发展。乘法季节模型先考虑S12Dp的短期相关性。观察12阶以内(包括12阶)的自相关系数和偏自相关系数,两者均拖尾,所以尝试用ARMA(1,1)模型提取差分后序列的短期自相关信息。再考虑S12Dp的季节相关性(季节效应本身还具有相关性)。观察以12期为单位的自相关系数和偏自相关系数,前者1阶截尾,后者拖尾,所以用以12步为周期的ARMANI

23、)?即MAI?模型提取序列S12Dp的季节自相关信息。综上所述,(对原序列)拟合模型:ARIMA(1,1,l)x(0,1,1)12ModelModelModel3Ibv/if/inWeishtE2】Ilepindentv:=Lt_1!IrLileperLileiLtt-:=ltiallies!ARIKljARMAXjand.oherMdelModelZby/if/i;nSe-:clii2Loglikeliliood=-154A_217AP.IHAreyressi口nSlEDp口EGStd.ErrS璃1H195%Coni.Int-ervalSIZBp_COI1S-SZ59T322.25918Z-

24、0.410.682-h.35388?3.501942AKObLfLI.3108391.129548C2.0_004_1169292.624150JiiiaL03U3316.1585357-0.IS0.847-.3412619.28019CSAimii2maLI.999哎专0却275.S477-0.M6.597-541.515539.515/siiipiLa141_020519448.810.010.49703825?.mm截距项,参数和参数012均不显著。0-ADOA季节效应如此明显的序列S12Dp居然难以构建乘积季节模型。回到ARIMA模型:由于对Dp构建的MA(1)模型(无截距项)较好,观

25、察该模型的残差图和残差平方图(Stata语句).tslineehat1吕G0口口1?OSTdtDJSi.u口-emga50100150200250nARIMA(O,1,l)(noconstant)的残差图1从残差图看,方差变化幅度较大,参差不齐。.twoway(connectedehat1nin1/252)=050100150200250ri吕s0口弓口吕L-enEgaARIMA(0,1,1)(noconstant)的残差图2.generatee12=ehat1*ehat1(1missingvaluegenerated).twoway(connectede12n)50100150200250r

26、i口吕口启匸吕口寻吕口吕0ARIMA(O,1,l)(noconstant)的残差平方图Ps.tslinee12也可以得到残差平方图(同均值的残差序列的方差就是残差平方的期望,)残差平方图上的异方差性太过明显了。3考察序列的差分平稳属性,并考察过差分特征差分的目的是平稳序列。过差分,过多次数的提取信息,虽然提取掉了非平稳的确定性信息,却浪费了更多的其他信息。第2小题中,我对原序列进行了1阶12步差分,从时序图和自相关图可见,1阶差分后序列Dp变平稳了,如果再考虑季节因素,对Dp进行12步差分,得到序列S12Dp,它的时序图为:时序图显示,虽然序列S12Dp具有集群效应,但从整个观察期来看,多数时

27、间序列波动不大。自相关图在第2小题里:od-o0X10QOOod-o.甲14*010203040LagBartlettsformulaforMA(q)95%confidencebands自相关图显示,短期内延迟一阶后序列S12Dp的自相关系数即落入阴影区域内,之后,绝大部分滞后期的自相关系数也在阴影范围内。序列S12Dp短期自相关,比较平稳。过差分的情况会是怎样?在Stata中尝试对序列Dp再做一次差分:(Stata语句).generateD2p=D.Dp.tslineD2p.acD2p比照2阶差分后序列D2p与1阶后序列Dp的时序图、自相关图:Dp的自相关图D2p的自相关图十1lyl由时序图

28、发现,2阶差分后序列的波动幅度反而变大了(方差更大了),而它的自相关系数正负变化得更为频繁。虽然序列D2p也是平稳的,但是与Dp相比,它不是最理想的。4拟合模型,预测未来一年的月度水平(接第2小题)对异方差的直观检验完毕,为构造ARCH模型,进一步进行LM检验:使用regress命令对Dp进行MA(1)回归regressDpL.Dp计算LM统计量进行检验即:estatarchIm,lags(1234)=_eistatarchlm,.1曰1234)LIIt.estfdraut.ijregressivecomiit.iurialhetercsksdagticity(ARCH)lags.tp)chi

29、ZdfProtodhig12_02110.1545220_04292S.32530_03fi孕3.0914HLi:noARCHeffedssvs-Hl:AP.CHrp)dist-urbailee当ARCH模型中的自回归项数为(p=)2,3,4时,LM检验统计量的P值小于显著性水平0.05,拒绝原假设,认为残差平方序列方差非齐,且可用ARCH模型拟合该序列中的自相关关系。(Ps.ma(1)指的是对Dp建立ma模型arch(l)指的是对Dp的残差项建立滞后为1期的条件异方差模型)i自回归项数为1(p=1)ProbcIliZEGKECHnop-ILrrmd-a.lIostdstupatjOILLag

30、sofconditictlsIyariajicatIInjaLudc:AF1CH-ln.-ti4ternitli.114ABZM-iD.me工口djitioilsSwm:dfies3tableandtstsLinearmodelsau.drelatml卜*IBlnaryoutcomcEOrdinaloutcomesiCtefforicaloutcoineriCi)untoutcomestC4XVWaJ.1Z41X3.X*ajrTiCi-=1EKdTre-itmenietats卜DEndogenouscovaiia.its卜uSample-stiestionncdelskE:cactstlst.

31、1askIT卽珂arun4triaiskJTimeseriesMiltivariatetinesariesLungitiid:nal/paneldataMiiltllevelmixed._EffectmodelsSurvivalanalysis-J-Epidemiolocyandrelat显n.SEM(strueale11-3.t.iextmodlirgJ卜SurveyditaarsalysisMiltlpleimpiitationMultivur:ataan.flJ.vEiekI1ependH:rLtv:=ltible:IrLdHpnderd戸:丑SetiDmdutilAMIVkandAMK

32、XmodelsABCH-fGAKHAKFIBAmodelsUnob弓Etrved-conDDriEiit呂nodelErin呂tinB.eErEionvithBewey-IYeEtstlNode/ModallPrLminEIv/lf/in=archDp.ai?ch.chiZOPGCcef.St-d.Err.95%ConE-IntervalBpcons6-37063311.453370.578-1607757281S83AiumLl-.3027854.07004164.320.000.1555064.4400643MtCHarchLl-cons-38544.0976429731-12720.00

33、00.00013681.28.576816516547.24Mkdi兰turbsiic色sARCHfsiikilyrtgrtissiuii252251Dist-ribi.iti口血:GwssiaoiDffaldcliiZ(1:19.27Loglik&liliL-od-1599.71Pr-jbclii2Up:LIPG2|h|95%Conf.IntsivtslICoe.囂七cLErr.KRtSAIllSlLI._902954.06901224_J9ooao_1T692_4382154ACHarclLI.3B40355.094090C4_08ooao.1936214_5S4497cons15145_

34、(O707.033121-43ooao13763_3316534.85ii自回归项数为2(p=2)Moh1jRodeL2|卅口日乞.3|Farining|:by/if/in|riilu|SE/Robost.|REiiuri.i:n.F|Rtuciiijcalian|Suppressconstantterninfillmodelsp4cifscqlLLon.1:AECHnLFiUFi屯121-CJJE.CHnLEiunLn芸*:*)Supply11stolags:(eARCH1=GARCHlacLOPe,=iyffiacinwilgs:Model2中设置不变或者archDp,arch(1/2)a

35、rima(0,0,1)nolog=.archDprarchfl2)arma(OQ.1JnoLogARCHtaniilyregression-I1AdisturbancesOPGmum2-17O4C212.0.17O-OCC-29-0421127.30224LI34BCMsrch.12490.0414?65.15D1strIbut1on.:Gaussian.LogLlkellliood=-15M834nani-1.453795.0814?7.4(11132-0015563:.2502437cons13727.66B1415321.740-000NiuniierorodeZ51WallchlZ(1

36、)12.12Prob袞dilZ0.000595ConfInterval.2713154.D9C84252.800.005.1259.D6344181.980.047zMUIAHlElarchDp,.noconst-ant-arch(1/2)Arma(0,0.1)nologARCHfamilyregressiLm-HAdisturbannes丄2.30-0004LIMtCHarcti611QG;L&12512161430S.Q5Coef.Std.Err95%Conf.Interval.332475.0935668.1450S14.0957613.0842519.4596292.0J2741.00

37、24J91.2504CS9GQX1513710G000QNi.ullLierofcbs:WaldchiZ(1)Loglikelihood=-1594.313Probchi2LI.27194052_840.005L2.1264542.000.04iii自回归项数为3(p=3)同理得:ARCHfaiu-ilyregressionIIAdisfurtaticesSample:2-252NtullIlierofobs=251Dxst-ribu.tion:Ga.usslanWaldchi2(l;i=27.7SLoglikeliliood=-1511.482ProLachiZ=0.0000Coe.OPGS

38、i-d.Err.z1z1【9占毎Conf.IixtervalBP_cohe-1_18290&7.993903-0_150.882-ZL6_8506714.48485MUGkmaLI.-3480662.0C604055_270.000_2186292-4775032ARCHarchLI.3109709.102491t303.110091-5118509L-2.10TJ517.063274l.ClQo.iosj)-.022263.2257CC5L3.071777S6.3705981434cons6350_162858.0447_400.0004668.4278031.89

39、SL2前的系数显著性检验无法通过,建模停止,确定ARCH模型的自回归项数为1或2:p=1时,h(t)=3+(Stata语句).archDp,noconstantarch(1/1)arima(0,0,1)nolog.predictehat,residual(1missingvaluegenerated).wntestqehatPortmanteautestforwhitenoise45.13660.2659Portmanteau(Q)statisticProbchi2(40).wntestbehat001CD0Oaoood-oCNOQOOP值均大于a,残差列通过白噪声检验。.estaticModel|-L+Obsll(null)ll(model)dfAIC.|251.-1599.7133205.42AkaikesinformationcriterionandBayesianinformationcriterion之前的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论