因子分析在STATA中实现和案例_第1页
因子分析在STATA中实现和案例_第2页
因子分析在STATA中实现和案例_第3页
因子分析在STATA中实现和案例_第4页
因子分析在STATA中实现和案例_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.wd.wd.wd.第13章 因子分析因子分析始于1904年Chars Spearman对学生成绩的分析,在经济领域有着极为广泛的用途。在多个变量的变化过程中,除了一些特定因素之外,还受到一些共同因素的影响。因此,每个变量可以拆分成两局部,一是共同因素,二是特殊因素。这些共同因素称为公因子,特殊因素称为特殊因子。因子分析即是提出多个变量的公共影响因子的一种多元统计方法,它是主成分分析的推广。因子分析主要解决两类问题:一是寻求 基本构造,简化观察系统。给定一组变量或观察数据,是否存在一个子集,特别是一个加权子集,来解释整个问题,即将为数众多的变量减少为几个新的因子,以再现它们之间的内在联系。二是

2、用于分类,将变量或样本进展分类,根据因子得分值,在因子轴所构成的空间中进展分类处理。p个变量X的因子模型表达式为:f称为公因子,称为因子载荷。X的相关系数矩阵分解为:对于未旋转的因子,。称为特殊度,即每个变量中不属于共性的局部。13.1 因子估计Stata可以通过变量进展因子分析,也可以通过矩阵进展。命令为factor或factormat。webuse bg2,cleardescribefactor bg2cost1-bg2cost6factor bg2cost1-bg2cost6, factors(2)* pf 主因子方法,用复相关系数的平方作为因子载荷的估计量(默认选项)factor bg

3、2cost1-bg2cost6, factors(2) pcf* pcf 主成分因子,假定共同度1factor bg2cost1-bg2cost6, factors(2) ipf* ipf 迭代主因子,重复估计共同度factor bg2cost1-bg2cost6, factors(2) ml* ml 极大似然因子,假定变量至少3个服从多元正态分布,对偏相关矩阵的行列式进展最优化求解,等价于Rao的典型因子方法13.2 预测Stata可以通过predict预测变量得分、拟合值和残差等。webuse bg2,clearfactor bg2cost1-bg2cost6predict f1 f2 *

4、 factor1 factor2因子分得分predict stdp residuals* 预测标准差和残差13.3EstatEatat给出了几个非常有用的工具,包括KMO、SMC等指标。webuse bg2,clearfactor bg2cost1-bg2cost6estat antiestat kmoestat residualsestat smcestat summarize13.4 因子旋转与作图因子分析的旋转方法以及碎石图、得分图、因子载荷图与主成分分析的方法一样,请参见主成分分析一章。webuse bg2,clearfactor bg2cost1-bg2cost6screeplot

5、/*碎石图*/scoreplot /*得分图*/loadingplot /*因子载荷图*/rotate /*旋转*/例:利用2009年的数据对中国社会开展状况进展综合考察,原始数据如下表:省份人均GDP元新增固定资产亿元城镇居民人均年可支配收入元农村居民家庭人均纯收入元高等学校数所卫生机构数个areax1x2x3x4x5x6 北 京630292385.824724.8910661.92856497 天 津554731676.819422.537910.78552784 河 北232394734.213441.094795.4610515632 山 西203981772.613119.05409

6、7.24699431 内蒙古322143309.314432.554656.18397162 辽 宁312595056.714392.695576.4810414627 吉 林235143279.912829.454932.74559659 黑龙江217272405.411581.284855.59787928 上 海731242523.226674.911440.26662822 江 苏396227645.918679.527356.4714613357 浙 江422143434.822726.669257.939815290 安 徽144852849.512990.354202.49104

7、7837 福 建301231768.317961.456196.07814478 江 西147812962.512866.444697.19828229 山 东330836852.516305.415641.4312514973 河 南19593641413231.114454.249411683 湖 北198603053.413152.864656.3811810305 湖 南175212478.213821.164512.4611514455 广 东375895529.219732.866399.7912515819 广 西14966141914146.043690.346810427 海

8、 南17175230.212607.844389.97162220 重 庆180251381.914367.554126.21476265 四 川153782918.712633.384121.219020738 贵 州882490311758.762796.93455848 云 南12587155113250.223102.6599249 西 藏13861137.412481.513175.8261326 陕 西182462262.812857.893136.46888812 甘 肃12110575.210969.412723.793910534 青 海17389322.811640.433

9、061.2491582 宁 夏17892403.912931.533681.42151629 新 疆198931162.911432.13502.9376739程序:clear*定义变量的标签label var area 省份label var x1 人均GDP元label var x2 新增固定资产亿元label var x3 城镇居民人均年可支配收入元label var x4 农村居民家庭人均纯收入元label var x5 高等学校数所label var x6 卫生机构数个 describefactor x1-x6screeplot /* 碎石图特征值等于1处的水平线标示保存主成分的分界

10、点*/*检验estat kmo /*KMO检验,越高越好*/estat smc /*SMC检验,值越高越好*/rotate /*旋转*/loadingplot , yline(0) xline(0)/*载荷图 */*预测predict score fit residual q /*预测变量得分、拟合值和残差以及残差的平方和*/predict f1 f2label var f1 收入因子label var f2 投资、社会因子list area f1 f2summarize f1 f2correlate f1 f2scoreplot,xtitle(收入因子) ytitle(投资、社会因子) /m

11、label(area) yline(0) xline(0) /*得分图*/分析:首先通过主因子分析(factor),得到主成分因子:Factor analysis/correlation Number of obs = 31 Method: principal factors Retained factors = 3 Rotation: (unrotated) Number of params = 15 - Factor | Eigenvalue Difference Proportion Cumulative -+- Factor1 | 3.28193 1.42544 0.6554 0.65

12、54 Factor2 | 1.85648 1.81677 0.3707 1.0261 Factor3 | 0.03971 0.06244 0.0079 1.0341 Factor4 | -0.02272 0.03972 -0.0045 1.0295 Factor5 | -0.06244 0.02293 -0.0125 1.0170 Factor6 | -0.08538 . -0.0170 1.0000 - LR test: independent vs. saturated: chi2(15) = 211.52 Probchi2 = 0.0000Factor loadings (pattern

13、 matrix) and unique variances - Variable | Factor1 Factor2 Factor3 | Uniqueness -+-+- x1_s | 0.8609 -0.4463 -0.1125 | 0.0469 x2_s | 0.6274 0.6026 -0.1061 | 0.2320 x3_s | 0.8800 -0.3931 0.0998 | 0.0611 x4_s | 0.9120 -0.3658 0.0365 | 0.0332 x5_s | 0.6508 0.6526 0.0349 | 0.1494 x6_s | 0.3427 0.7616 0.0

14、572 | 0.2993 -从上面的分析可以看出,只有两个成分大于1大于的特征值,同时两个成分解释了全部六个变量组合的方差还多。不重要的第2 到6个主成分在随后的分析中可以放心地省略去。运行factor命令后,我们可以接着运行screeplot命令画出碎石图。碎石图中特征值等于1处的水平线标示了保存主成分的常用分界点,同时再次强调了本例中的成分3到成分6并不重要。碎石图检验的方法还是跟上一章的主成分分析一样,由于我们都是选用实际的数据来进展分析,所以在一般情况下,检验都是通得过的,可以忽略,觉得有需要的再进展检验。旋转会进一步简化因子构造。在提取因子之后,键入rotate命令进展旋转。Fact

15、or analysis/correlation Number of obs = 31 Method: principal factors Retained factors = 3 Rotation: orthogonal varimax (Kaiser off) Number of params = 15 - Factor | Variance Difference Proportion Cumulative -+- Factor1 | 2.90489 0.67214 0.5801 0.5801 Factor2 | 2.23276 2.19228 0.4459 1.0260 Factor3 |

16、 0.04047 . 0.0081 1.0341 - LR test: independent vs. saturated: chi2(15) = 211.52 Probchi2 = 0.0000Rotated factor loadings (pattern matrix) and unique variances - Variable | Factor1 Factor2 Factor3 | Uniqueness -+-+- x1 | 0.9659 0.0601 0.1284 | 0.0469 x2 | 0.2269 0.8399 0.1052 | 0.2320 x3 | 0.9585 0.

17、1143 -0.0844 | 0.0611 x4 | 0.9708 0.1546 -0.0211 | 0.0332 x5 | 0.2236 0.8940 -0.0362 | 0.1494 x6 | -0.0962 0.8291 -0.0635 | 0.2993 -Factor rotation matrix - | Factor1 Factor2 Factor3 -+- Factor1 | 0.8578 0.5138 0.0115 Factor2 | -0.5137 0.8579 -0.0135 Factor3 | 0.0168 -0.0056 -0.9998 -结合实际情况,我们通过上面的分

18、析整理出前两个主因子的正交因子表。表:正交因子表 因 子指 标FactorFactor12x10.96590.0601x20.22690.8399x30.95850.1143x40.97080.1546x50.22360.8940 x6-0.09620.8291根据上表将六个指标按高载荷分成两类,并结合专业知识对各因子命名,如下表:表:高载荷分类高载荷指标因子命名1人均GDP城镇居民人均年可支配收入农村居民家庭人均纯收入收入因子2高等学校数卫生机构数新增固定资产投资、社会因子接着进展一个后续因子分析的制图命令loadingplote有助于将其可视化。从图中我们就可以直观的看出在主因子1中x1、

19、x3、x4明显取得较大值,而对于主因子2那么是x2、x5、x6取得较大的值。载荷图因子分是通过将每个变量标准化为平均数等于0和方差等于1,然后以因子分系数进展加权合计为每个因子构成的线性组合。基于最近的rotate或factor结果,predict会自动进展这些计算。通过命令predict f1 f2,我们得到了各个观察变量的主因子1、主因子2的得分情况。. list area f1 f2 +-+ | area f1 f2 | |-| 1. | 北 京 2.561218 -.3716789 | 2. | 天 津 1.557873 -.9623399 | 3. | 河 北 -.3308641 1

20、.11135 | 4. | 山 西 -.4196471 -.1267554 | 5. | 内蒙古 .0597282 -.493462 | |-| 6. | 辽 宁 .0589154 1.03599 | 7. | 吉 林 -.1869884 -.0693724 | 8. | 黑龙江 -.3388027 .0518705 | 9. | 上 海 3.102133 -.8749663 | 10. | 江 苏 .7713872 1.864629 | |-| 11. | 浙 江 1.640963 .5580102 | 12. | 安 徽 -.5925296 .5026094 | 13. | 福 建 .53

21、76554 -.3128498 | 14. | 江 西 -.445243 .2467043 | 15. | 山 东 .1589503 1.588749 | |-| 16. | 河 南 -.4744598 1.084772 | 17. | 湖 北 -.4194019 .7986803 | 18. | 湖 南 -.4611212 .8609527 | 19. | 广 东 .6425342 1.33433 | 20. | 广 西 -.5491737 -.1288966 | |-| 21. | 海 南 -.2889173 -1.39015 | 22. | 重 庆 -.3183038 -.6323313

22、 | 23. | 四 川 -.652319 .9108785 | 24. | 贵 州 -.9411649 -.6618432 | 25. | 云 南 -.7608307 -.2586383 | |-| 26. | 西 藏 -.6072451 -1.569231 | 27. | 陕 西 -.7326311 .1913275 | 28. | 甘 肃 -.9497479 -.5987777 | 29. | 青 海 -.6269016 -1.50444 | 30. | 宁 夏 -.4114082 -1.422286 | |-| 31. | 新 疆 -.5836563 -.7628338 | +-+.

23、summarize f1 f2 Variable | Obs Mean Std. Dev. Min Max-+- f1 | 31 -4.09e-09 .988557 -.9497479 3.102133 f2 | 31 9.13e-09 .9464783 -1.569231 1.864629在这些因子分之间是存在着相关,在默认选项中,promax旋转允许因子分之间存在相关。通过运行命令correlate f1 f2可得。从运行出来的结果看到,两个因子分相关关系是很小的。. correlate f1 f2(obs=31) | f1 f2-+- f1 | 1.0000 f2 | 0.0158 1.

24、0000另一个后因子分析制图命令,scoreplot可绘出这些观测案例的因子分的散点图。在本例的得分图中,我们可以看到,上海、北京、浙江、天津这些城市的主因子1的得分相对于其他城市高,因为主因子1是收入因子,这些城市的收入在全国是排在前列的。而我们可以看到北京、上海的在主因子2即投资、社会因子的得分是较低,这是因为这两个城市的经济总量相对较小。在江苏、山东、广东这些经济总量名列前茅的省份,它们的主因子2的得分也是相应位于其他城市前面。得分图练习:将上一章的主成分分析的例子的数据进展因子分析。省份GDP (亿元居民消费水平(元 固定资产投资(亿元) 职工平均工资元货物周转量 (亿吨公里) 居民消

25、费价格指数 (上年100) 商品零售价格指数 (上年100) 工业总产值 (亿元) areax1x2x3x4x5x6x7x8 北 京10488.03203463814.756328758.9105.1104.410413 天 津6354.38140003389.8417482703.4105.4105.112503 河 北16188.6165708866.6247565925.5106.2106.723031 山 西6938.7361873531.2258282562.2107.2107.210024 内蒙古7761.881085475.4261143658.7105.7104.78740.2

26、 辽 宁13461.57962510019.1277297033.9104.6105.324769 吉 林6424.0675915038.9234861157.8105.1106.28406.9 黑龙江831070393656230461690.9105.6105.87624.5 上 海1369815656516029.8105.8105.325121 江 苏30312.611101315300.6316674300.9105.4104.967799 浙 江21486.92138939323341464974.9105106.340832 安 徽8874.1763776747263635843.2106.2106.311162 福 建1082

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论