版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 信息化条件下基于混合logit模型的出发时间选择行为研究 孙正安 李春燕【Summary】为研究在提供信息条件下驾驶人的出发时间选择行为,认为影响驾驶人出发时间选择行为的两个重要因素,即早到延误和晚到延误持续时间的长短对出发时间选择造成的影响是不同的,并提出早到延误与晚到延误服从正态分布的假设,采用混合logit模型进行验证,结果表明驾驶人对早到延误的敏感度较低,而对晚到延误的多少更为敏感。最后通过对比混合logit模型与多项logit模型,发现混合logit模型优度显著,更适合于出发时间选择行为的研究。【Key】出发时间选择行为;实时信息;早到延误;晚到延误;正态分布;混合logit模型一
2、、引言在研究城市常规性交通拥堵问题时,出发时间的选择是不可避免的因素,然而已有的传统模型如四阶段法等较少考虑出行时间这一因素,因此,对于出发时间选择行为的研究十分必要。目前国外对信息化条件下出发时间的研究主要基于广义费用理念,主要为离散模型。Small、Mcfadden、Mccafferty、Chin等采用多项logit模型对驾驶人的出发时间选择模型进行了研究。Mannering等将出发时间假定为服从泊松分布,研究驾驶人在一个月内改变出发时间或出行路径的频率。Mannering等采用离散模型和连续模型相结合的方法对驾驶人为避免早高峰时段而愿意推迟出发时间的决定进行描述。Palma等采用经济学原
3、理对通勤者采用公共交通出行的出发时间分布进行了分析。国内林勇等通过预测不同时间段内的OD分配影响系数,对驾驶人出发时间分布特点及不同出发时间段内的交通流量和系统状态进行总结分析。沈未等采用动态交通分配方法,探讨在单一路径条件下的出发时间选择行为分析。张弘弢等建立了顺序出发选择模型,提高了预测精度。在已有的文献中,对出发时间选择行为的研究思路主要是基于广义费用理念,广义费用理念认为在出行时间所花费的费用和早到或迟到延误两者之间存在一个平衡点,一方面,驾驶人不愿花大量的时间在路上,而由于在通勤高峰期时出行会延长出行时间,因此会有驾驶人选择提前或者延后出发以避免或尽量缩短高峰时段的出行时长;另一方面
4、,由于提前或延后出发有可能会造成驾驶人提前或延后到达单位,从而造成通勤规定时刻的损失。为尽量避免两者之间的矛盾,总存在一个平衡点使得两种损失达到最小。研究者采用多项logit模型时认为广义费用对出行时间选择行为的影响是固定不变的,但在实际过程中,早到或者晚到时间的程度大小对通勤者的影响是不同的,本文将考虑该因素不同程度的影响,并建立混合logit模型进行验证。二、模型建立考虑早到或晚到单位的时间长短对驾驶人出发时间的选择行为影响,采用混合logit模型如式(1)所示。在混合logit模型中可根据实际情况选择部分服从一定的数学分布,最常见的有正态分布,对数正态分布和均匀分布,的数学分布形式受到实
5、际状况的影响。以驾驶人晚到延误为例,不同通勤者对驾驶人晚到延误的权重不同,当延后到达单位的持续时间过长时,促使驾驶人改变出发时间的概率会变得很大,此时晚到延误对驾驶人的出发时间改变选择的影响为绝对值较大的正值,而当晚到延误很小或为0时,驾驶人认为这种情况下的出发时间选择是合理的,此时的晚到延误对驾驶人改变出发时间行为的影响权重很小,表现为绝对值较小的负值或0,综合上面分析,在采用混合logit模型进行出发时间选择行为分析时,令参数 服从正态分布,模拟不同早到延误和晚到延误对驾驶人出发时间选择行为的影响。三、实例验证为验证上述假设的有效性,以南京的两个典型地点雨花台和鼓楼分别作为被调查者通勤出行
6、的起点和终点,对673个驾驶人进行随机调查,并被告知通常条件下他们的出发时间为7:30,以出发时间以提前或延后5分钟为一间隔分为三个时间段7:25,7:30和7:35,向被调查者提供描述型实时信息“其行走路径在7:30时发生拥堵”,由其作出出发时间的选择,最后通过建立模型分析显著影响驾驶人改变出发时间的因素。调查共收到642个有效样本。(一) 首次建模及验证调查因素共分三类,分别为驾驶人个体属性、日常出行模式和延误因素,其中前两者对驾驶人的出发时间选择行为影响是固定不变的,而延误因素对出发时间选择行为的影响服从正态分布,将上述影响变量带入方程式(2),得到下式:上式中:SEX为性别,AGE为年
7、龄,DEGREE为学历,OCCUPATION为职业,DRIVAGE为驾龄,INCOME为收入,FAMIROUTE为被调查的通勤驾驶人对南京道路网的熟悉程度,DRIWORK为被调查的通勤驾驶人最近一周内驾车去工作的次数,ADJUSTDT为被调查的通勤驾驶人最近一周内改变出发时间的次数,SDE为早到延误,SDL为晚到延误。采用式(3)作为出发时间选择模型的系统效用方程,利用STATA软件建立混合logit模型。以按照7:30出发为目标参照变量,采用逐步剔除不显著变量的方法,选取显著性在90%以上的变量,得到7:25和7:35出发的参数估计结果如表1所示。从表1中可以发现,SDE检测显著水平低于90
8、%,正态分布假设不明显,说明如果驾驶人提前到达单位的时间较长和提前到达单位的时间较短这两种状况下对驾驶人改变出发时间的意愿影响相差不大,与SDE的影响相比,驾驶人更关注SDL的影响,当驾驶人晚到单位的时间较长时,其在下次出行时改变出发时间的意愿会更大。(二)再次建模及验证对SDE参数设为固定值,对SDL参数仍假设其服从正态分布,对驾驶人的出发时间选择行为进行第2次预测,并剔除不显著变量,得到实时信息条件下的参数预测如下。将实时信息条件下晚到延误SDL服从的正态分布分别绘制曲线如图1所示。从表2中可以看出,与SDE的参数服从正态分布条件下的参数估计结果相比,当假设SDE的参数为固定值时,SDL参
9、数的正态分布更加明显。从图1中可以看出,实时信息条件下驾驶人迟到的持续时长对驾驶人选择提前5分钟和延后5分钟出发这一决定的影响服从明显的正态分布,参数收敛于区间0,1。晚到持续的时长越长,驾驶人越不倾向于选择晚出发5分钟。四、混合logit模型优度分析传统条件下驾驶人出发时间选择行为的常用模型为多项logit模型,为比较上述混合logit模型的优劣程度,采用多项logit模型对同一问题进行建模,结果如表3所示。从上表中可以发现: 在实时信息条件下,采用混合logit模型进行预测的似然值均比采用多项logit模型进行预测时得到的似然值要大,说明在分析驾驶人出发时间选择行为时,混合logit模型的
10、优度要明显高于logit模型。 在实时信息条件下,采用多项logit模型得到的SDL2和SDL3两个变量的参数估计值均低于0.1,对驾驶人的出发时间选择行为的解释力弱,但在实际情况下驾驶人晚到单位的持续时长对其改变出发时间的行为是有影响的,采用混合logit模型进行预测得到的结果证明了以上结论,并且通过SDL的参数估计结果可以看出,越晚到达单位,通勤驾驶人可能的损失越大,越容易改变出发时间。五、结论以往的出发时间选择行为研究多采用传统的logit模型进行理论分析,且较少考虑不同的早到延误和晚到延误对选择行为的影响程度。本论文提出驾驶人早到和晚到单位持续时长对出发时间的选择有非线性影响作用,并利
11、用混合logit模型对该假设进行验证。通过与多项logit模型的比较,发现混合logit模型优度显著。通过剔除不显著变量进行了两步分析,发现SDE这一变量并不明显服从正态分布,由此也说明通勤驾驶人对晚到单位的时长更加敏感,且到达单位的时间越晚,越容易改变出发时间。Reference1Nicholas Holyoak. Departure time choice for the car-based commute. The 31stAustralasian transport research forum. Australia: ATRF, 2008. 429-442.2Tseng Yin-Ye
12、n, Koster Paul, Peer Stefanie, et al. Discrete choice analysis for trip timing decisions of morning commuters-estimations from joint SP/RP-GPS data. International choice modeling 2011.3Ida Kristoffersson. Incorporation of departure time choice in a mesoscopic transportation model for StockholmJ/OL.
13、http:/smash/get/diva2:218664/FULLTEXT01, 2009.4Small A Kenneth. The scheduling of consumer activities: work trips. The American economic review, 1982, 72(3): 467-479.5Mcfadden Daniel, Talvitie P Antti. Demand model estimation and validation and associates urban travel demand forecasting project J/OL
14、, http:/wp/utdfp/vol5/front.pdf, 1977.6Desmod McCafferty, Hall L Fred. The use of multinomial logit analysis to model the choice of time to travel. Economic geography, 1982, 36(3): 236-246.7Chin, H T Anthony. Influences on commuter trip departure time decisions in Singapore. Transportation Research
15、Part A, 1990, 24(5): 321-333.8Mannering L Fred. Possion analysis of commuter flexibility in changing routes and departure times. Transportation Research Part B, 1989, 23(1): 53-60.9L Fred Mannering, Hamed M Mohammed. Occurrence, frequency, and duration of commuters work-to-home departure delay. Tran
16、sportation Research Part B, 1990, 24(2): 99-109.10De A Palma, C Fontan, O. Mekkaoui. Trip timing for public transportation: An Empirical Application. http:/p/ema/worpap/2000-19.html. 2000.11林勇,余志,何兆成.交通仿真系统中车辆出发时间分布模式研究J.系统工程学报,2011, 26(6): 801-808.12沈未,陆化普.单一路径下基于固定到达时间的最优出发时间分布研究J.公路交通科技, 2004, 21(9): 86-90.13张弘弢,闾国年,温永宁.基于TRANSIMS的顺序出发
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 报关实务-课后题及答案改 田征
- 组合性牙瘤病因介绍
- 福建省龙岩市一级校联盟2024-2025学年高一上学期11月期中考试语文试题
- 智能制造生产线技术及应用 教案 3-2 立式加工中心
- 2024年度软件开发合同标的与软件交付标准3篇
- 潜水性内耳损伤病因介绍
- 淋巴管平滑肌瘤病因介绍
- 泌尿生殖系支原体感染病因介绍
- (麦当劳餐饮运营管理资料)12大系统建议的责任分配表
- 开题报告:职业本科教育的推进路径及实施策略研究
- GB/T 10069.3-2024旋转电机噪声测定方法及限值第3部分:噪声限值
- 医疗器械公司组织机构图以及部门设置和岗位职责说明
- TTJSFB 002-2024 绿色融资租赁项目评价指南
- 2024至2030年中国医联体(医疗联合体)建设全景调查及投资咨询报告
- 人教版二年级下数学全册教案设计(表格+各单元知识树)
- 基础模块2 Unit7 Invention and Innovation单元测试2025年中职高考英语一轮复习讲练测(高教版2023修订版·全国用)
- 亲近动物丰富生命体验 课件 2024-2025学年语文七年级上册
- 安徽干部教育在线2024年必修课考试答案
- 2024年公文写作基础知识竞赛试题库及答案(共220题)
- 2025九年级上语文人教期末综合测评卷含答案
- 传染病学考试题库及答案
评论
0/150
提交评论