版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,是一个工件的三视图,则此工件的全面积是()A60cm2B90cm2C96cm2D120cm22如图,ABCD,DBBC,2=50,则1的度数是()A40B50C60D1403已知圆心在原点O,半径为5的O,则点P(-3,
2、4)与O的位置关系是( )A在O内 B在O上C在O外 D不能确定4若实数 a,b 满足|a|b|,则与实数 a,b 对应的点在数轴上的位置可以是( )ABCD5三角形两边的长是3和4,第三边的长是方程x212x350的根,则该三角形的周长为( )A14B12C12或14D以上都不对6在数轴上标注了四段范围,如图,则表示的点落在( )A段B段C段D段7如图,已知AB和CD是O的两条等弦OMAB,ONCD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP下列四个说法中:;OM=ON;PA=PC;BPO=DPO,正确的个数是()A1B2C3D48由五个相同的立方体搭成的几何体如图所示,则它的
3、左视图是( )ABCD9已知二次函数y=x2 + bx +c 的图象与x轴相交于A、B两点,其顶点为P,若SAPB=1,则b与c满足的关系是( )Ab2 -4c +1=0Bb2 -4c -1=0Cb2 -4c +4 =0Db2 -4c -4=010已知a,b为两个连续的整数,且ab,则a+b的值为()A7B8C9D10二、填空题(共7小题,每小题3分,满分21分)11若mn=4,则2m24mn+2n2的值为_12因式分解:4x2y9y3_13如图,已知点A(2,2)在双曲线上,将线段OA沿x轴正方向平移,若平移后的线段OA与双曲线的交点D恰为OA的中点,则平移距离OO长为_14在形状为等腰三角
4、形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是_15函数自变量x的取值范围是 _.16分解因式:_17已知:ab23,则a-2ba+2b的值是_三、解答题(共7小题,满分69分)18(10分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图(1)这次被调查的同学共有名;(2)补全条形统计图;(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?19(
5、5分)某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示)(1)该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;(2)该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;(3)该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 20(8分)如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员乙在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米
6、高,球落地后又一次弹起据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半求足球开始飞出到第一次落地时,该抛物线的表达式足球第一次落地点距守门员多少米?(取)运动员乙要抢到第二个落点,他应再向前跑多少米?21(10分)平面直角坐标系中(如图),已知抛物线经过点和,与y轴相交于点C,顶点为P.(1)求这条抛物线的表达式和顶点P的坐标;(2)点E在抛物线的对称轴上,且,求点E的坐标;(3)在(2)的条件下,记抛物线的对称轴为直线MN,点Q在直线MN右侧的抛物线上,求点Q的坐标. 22(10分)某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:商品
7、名称甲乙进价(元/件)4090售价(元/件)60120设其中甲种商品购进x件,商场售完这100件商品的总利润为y元写出y关于x的函数关系式;该商场计划最多投入8000元用于购买这两种商品,至少要购进多少件甲商品?若销售完这些商品,则商场可获得的最大利润是多少元?23(12分)如图,O是ABC的外接圆,FH是O的切线,切点为F,FHBC,连结AF交BC于E,ABC的平分线BD交AF于D,连结BF(1)证明:AF平分BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长24(14分)反比例函数y=(k0)与一次函数y=mx+b(m0)交于点A(1,2k1)求反比例函数的解析式;若一
8、次函数与x轴交于点B,且AOB的面积为3,求一次函数的解析式参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可.【详解】圆锥的底面圆的直径为12cm,高为8cm,所以圆锥的母线长=10,所以此工件的全面积=62+2610=96(cm2).故答案选C.【点睛】本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面积及由三视图判断几何体.2、A【
9、解析】试题分析:根据直角三角形两锐角互余求出3,再根据两直线平行,同位角相等解答解:DBBC,2=50,3=902=9050=40,ABCD,1=3=40故选A3、B.【解析】试题解析:OP=5,根据点到圆心的距离等于半径,则知点在圆上故选B考点:1.点与圆的位置关系;2.坐标与图形性质4、D【解析】根据绝对值的意义即可解答【详解】由|a|b|,得a与原点的距离比b与原点的距离远, 只有选项D符合,故选D【点睛】本题考查了实数与数轴,熟练运用绝对值的意义是解题关键5、B【解析】解方程得:x=5或x=1当x=1时,3+4=1,不能组成三角形;当x=5时,3+45,三边能够组成三角形该三角形的周长
10、为3+4+5=12,故选B6、C【解析】试题分析:121=232;131=319;15=344;191=45 344445,154191,1419,所以应在段上故选C考点:实数与数轴的关系7、D【解析】如图连接OB、OD;AB=CD,=,故正确OMAB,ONCD,AM=MB,CN=ND,BM=DN,OB=OD,RtOMBRtOND,OM=ON,故正确,OP=OP,RtOPMRtOPN,PM=PN,OPB=OPD,故正确,AM=CN,PA=PC,故正确,故选D8、D【解析】找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中【详解】解:从正面看第一层是二个正方形,第二层是左边一个正方
11、形故选A【点睛】本题考查了简单组合体的三视图的知识,解题的关键是了解主视图是由主视方向看到的平面图形,属于基础题,难度不大9、D【解析】抛物线的顶点坐标为P(,),设A 、B两点的坐标为A(,0)、B(,0)则AB,根据根与系数的关系把AB的长度用b、c表示,而SAPB1,然后根据三角形的面积公式就可以建立关于b、c的等式【详解】解:,AB,若SAPB1SAPBAB 1, ,设s,则,故s2,2,故选D【点睛】本题主要考查了抛物线与x轴的交点情况与判别式的关系、抛物线顶点坐标公式、三角形的面积公式等知识,综合性比较强10、A【解析】91116,即,a,b为两个连续的整数,且,a=3,b=4,a
12、+b=7,故选A.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】解:2m24mn+2n2=2(mn)2,当mn=4时,原式=242=1故答案为:112、y(2x+3y)(2x-3y)【解析】直接提取公因式y,再利用平方差公式分解因式即可【详解】4x2y9y3=y(4x2-9y2=x(2x+3y)(2x-3y).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键13、1【解析】直接利用平移的性质以及反比例函数图象上点的坐标性质得出D点坐标进而得出答案【详解】点 A(2,2)在双曲线上,k4,平移后的线段OA与双曲线的交点 D 恰为 OA的中点,D点纵坐标
13、为:1,DE1,OE1,D点横坐标为:x4,OO1,故答案为1【点睛】本题考查了反比例函数图象上的性质,正确得出D点坐标是解题关键14、 【解析】在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中,中心对称图案的卡片是圆、矩形、菱形,直接利用概率公式求解即可求得答案【详解】在:等腰三角形、圆、矩形、菱形和直角梯形中属于中心对称图形的有:圆、矩形和菱形3种,从这5张纸片中随机抽取一张,抽到中心对称图形的概率为:.故答案为.15、x1且x1【解析】根据分式成立的条件,二次根式成立的条件列不等式组,从而求解.【详解】解:根据题意得:,解得x1,且x1,即:自变量x取值范围是x1且x1故答案为x
14、1且x1【点睛】本题考查函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件16、【解析】直接利用完全平方公式分解因式得出答案【详解】解:=,故答案为.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键17、12 【解析】根据已知等式设a=2k,b=3k,代入式子可求出答案.【详解】解:由ab=23,可设a=2k,b=3k,(k0),故:a-2bb+2b=2k-23k2k+23k=-4k8k=-12,故答案:-12.【点睛】此题主要考查比例的性质,a、b都用k表示是解题的关键.三、解答题(共7小题,满分69分)18、(1)1000 (2)200 (3)54 (4)40
15、00人【解析】试题分析:(1)根据没有剩饭的人数是400人,所占的百分比是40%,据此即可求得调查的总人数;(2)利用(1)中求得结果减去其它组的人数即可求得剩少量饭的人数,从而补全直方图;(3)利用360乘以对应的比例即可求解;(4)利用20000除以调查的总人数,然后乘以200即可求解试题解析:(1)被调查的同学的人数是40040%=1000(名);(2)剩少量的人数是1000-400-250-150=200(名),;(3)在扇形统计图中剩大量饭菜所对应扇形圆心角的度数是:3601501000=54;(4)200001000200=4000(人)答:校20000名学生一餐浪费的食物可供40
16、00人食用一餐【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小19、(1);(1) ;(3);【解析】(1)直接根据概率公式求解;(1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1【详解】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(1)画树状图为:
17、共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,所以一个径赛项目和一个田赛项目的概率P1=;(3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P1=故答案为考点:列表法与树状图法20、(1)(或)(2)足球第一次落地距守门员约13米(3)他应再向前跑17米【解析】(1)依题意代入x的值可得抛物线的表达式(2)令y=0可求出x的两个值,再按实际情况筛选(3)本题有多种解法如图可得第二次足球弹出后的距离为CD,相当于将抛物线AEMFC向下平移了2个单位可得解得x的值即可知道CD、BD【详解】解:(1)如图,设第一次落地时,抛物线的表达式为由已知:当时即表
18、达式为(或)(2)令(舍去)足球第一次落地距守门员约13米(3)解法一:如图,第二次足球弹出后的距离为根据题意:(即相当于将抛物线向下平移了2个单位)解得(米)答:他应再向前跑17米21、(1),顶点P的坐标为;(2)E点坐标为;(3)Q点的坐标为.【解析】(1)利用交点式写出抛物线解析式,把一般式配成顶点式得到顶点P的坐标;(2)设,根据两点间的距离公式,利用得到,然后解方程求出t即可得到E点坐标;(3)直线交轴于,作于,如图,利用得到,设,则,再在中利用正切的定义得到,即,然后解方程求出m即可得到Q点坐标.【详解】解:(1)抛物线解析式为,即,顶点P的坐标为;(2)抛物线的对称轴为直线,设
19、,解得,E点坐标为;(3)直线交x轴于F,作MN直线x=2于H,如图,而,设,则,在中,整理得,解得(舍去),Q点的坐标为.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和锐角三角函数的定义;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式.22、 ();()至少要购进20件甲商品;售完这些商品,则商场可获得的最大利润是2800元【解析】()根据总利润=(甲的售价-甲的进价)甲的进货数量+(乙的售价-乙的进价)乙的进货数量列关系式并化简即可得答案;()根据总成本最多投入8000元列不等式即可求出x的范围,即可得答案;根据一次函数的增减性确定其最大值即可.【详解】()根据题意得:则y与x的函数关系式为(),解得至少要购进20件甲商品,y随着x的增大而减小当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业员工培训服务协议版
- 第26课 教育文化事业的发展-【帮课堂】2023-2024学年八年级历史上册同步学与练(部编版)
- 2024商业银行贷款及土地抵押协议样本版
- 2024年店铺管理者聘用协议版B版
- 2024年度品牌形象宣传广告物料定制合同版
- 2024年山东省消防设施建设合作合同版B版
- 2024室内装修材料供应与施工标准协议版B版
- 奢侈品行业零售店长发展白皮书 2024
- 2024年家用保洁员短期服务协议版B版
- 2024年专项物流合作协议范本版B版
- 民用无人驾驶航空器系统驾驶员训练大纲
- 区5G基站建设工作总结
- 农业合作社盈余及盈余分配表
- 讲文明树新风主题班会(共25张)课件
- 氧气瓶、乙炔瓶存放安全和使用安全管理手册
- JJG 1063-2010 电液伺服万能试验机-(高清现行)
- 优质工程评杯汇报课件
- 电气火灾、爆炸预先危险性分析
- 三年级数学上册苏教版《认识几分之一》教案(定稿公开课)
- 整形美容外科学教学大纲
- 《西方音乐史》课件伯辽兹
评论
0/150
提交评论