股市可预测性与技术指标协整性的模型检验_第1页
股市可预测性与技术指标协整性的模型检验_第2页
股市可预测性与技术指标协整性的模型检验_第3页
股市可预测性与技术指标协整性的模型检验_第4页
股市可预测性与技术指标协整性的模型检验_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、股市可预测性与技术指标协整性的模型检验* 公布时刻:2000年10月02日 周爱民内容摘要周爱民.股市可预测性与技术指标协整性的模型检验.数理统计与治理.1999,18(1),510一个有效的股市,其价格应该是随机波动的,反映市场信息的同质等量分布,或者讲无人能靠分析过去的信息而赚到钞票。但这与“可预测”并无矛盾,因为预测科学本身并不能提供100%的精度,而且“可预测”和靠预测来赚钞票又全然是两回事,股市有效性所遵从的随机游动模型本身就告诉了我们这一点。本文从建立股市自回归预测模型动身,并通过检验股市要紧技术指标的协整性来讲明这一点,同时指出了各种模型的阶数高与低与股市有效性相对强与弱之间的存

2、在着反向的关系。关键词:协整、可预测、检验。The Model-Test for the Prediction of Stock Marketsand the Cointegration of Technical IndexesZhou aiminThe Institute for Research in International Economics,Nankai UniversityAbstractPrices in an effective stock market vary stochasticly.It reflects the equal distribution of infor

3、mation of same quality.But it does not contradict with “predictable”,since prediction itself cannot provide absolute precision,more over,“predictable”is quite different from making money by means of prediction.It has been proved by the stochastic models of stock market efficiency.In this article the

4、 author tries to explain it through testing the cointegration of some major technical indexes and establishing auto-regrassion models of stock markets.Meanwhile,the author points out the reverse relationship between the different stage of various models and the different degree of stock market effic

5、iency.Key words:Cointegration,Effectiveness,Predictable,Test.一、沪、港股市可预测性的模型检验本文提出股市可预测性,针对的是证券市场有效性概念里,容易引起误解的几个地点1。需要强调的是:讲证券市场价格“可预测”不等于讲“能够100%的准确预见”,而是讲“能够使用一般用于经济预测的方法,建立起能在一定误差要求之下预测证券市场价格变动的预测模型”。显然,任何方法建立起的任何预测模型差不多上存在误差的。“可预测”是指所建立起的预测模型其误差是在可同意的范围内。比如一个遵循随机游走模型的随机变量,当它的方差与期望之比满足一定条件时,随机游走模

6、型本身确实是一个误差满足一定要求的预测模型。笔者认为股市的“可预测性”是一个始终伴随着证券市场有效性递进的强进程概念,即证券市场的有效性越强,其市场指数的变动中暴涨暴跌的情况就越少,建立预测模型的可能性就越大,“可预测性”就越强;反之假如证券市场的有效性越弱,单边上升或单边下降的可能性就越大,接下来随着市场的急速转向,建立预测模型的可能性就越小,其“可预测性”就越弱。为支持以上概念的提出,我们使用上海股市有史以来的指数数据和香港联交所的同期恒生指数,建立两地股市误差满足要求的预测模型,即下面的(1.1)式。MIt=a0+a1LMIt+a2D2+apDp+t(1.1)其中MIt为股指数据,LMI

7、t为其一阶滞后变量,D2=2MIt,,Dp=pMIt,分不为股指数据MIt二阶、p阶的差分变量。p为自回归的阶数,可由过拟合F-检验准则来界定,过拟合F-检验统计量的计算见下面的(1.2)式。F=(N-p)(SSEp-SSEp+1)/SSEp+1F(1,N-p)(1.2)其中N为样本容量,p为所检验的模型阶数,也即模型中所用解释变量的个数,而SSEp为p阶模型的残差平方和:SSEp=,其中et=Xt-Xt为模型残差。过拟合F-检验准则关于(1.1)式的修正AR(p)模型能够给出阶数是否足够高的检验,用于在显著程度下检验模型是否过度拟合,检验临界值及实际的计算结果见表1.1。表1.1上海股市指数

8、1991年12月17日至1995年12月7日,对p=21至24时的过拟合F统计量的检验(对=0.01,0.005,0.001) 模型 样本容量 自由度 原始模型F统计量 修正模型F统计量 F=0.001F理论值 =0.005F理论值 =0.001F理论值 p=21 1007 985 45.854 19.188 6.63 7.88 10.83 p=22 1007 984 29.982 359.385 6.63 7.88 10.83 p=23 1007 983 37.414 625.829 6.63 7.88 10.83 p=24 1007 982 28.940 218.076 6.63 7.88

9、 10.83 通常在假设H0ap+1=0,之下,当FF时,拒绝假设H0,当FF时,则同意假设H0。假如拒绝了假设H0,意味着AR(p)的阶数仍可升高,p+1阶的滞后变量(在我们的模型中指更高阶的差分变量Dp+1)能够被引入作为解释变量。假如同意了假设H0,则意味着AR(p)的阶数已够高了。表2.1给出了对上海股指使用F-过拟合检验的情况,从中能够看出,当模型阶数由p=21升至p=22时,模型的F统计量发生本质性变化,因此p=22时模型最好。以下为上海股市指数1991年12月17日至1995年2月7日,对p=22时的修正AR(p)模型。MIt=-7.48(-8.55)+1.01(945.92)L

10、MIt+10.63(52.62)D2-70.89(-33.84)D3+336.72(26.40)D4-1213.9(-22.18)D5+3448.7(19.37)D6-7911(-17.33)D7+14893(15.75)D8-23264(-14.47)D9+30370(13.41)D10-33265(-12.51)D11+30612(11.72)D12-23635(-11.03)D13+15247(10.41)D14-8158.5(-9.84)D15+3580.3(9.33)D16-1267.3(-8.86)D17+352.95(8.42)D18-74.482(-8.01)D19+11.19

11、6(7.62)D20-1.0683(-7.26)D21+0.0486(6.91)D22其中括号内的数值分不为对应回归参数的t统计量,且MSE=71.22,F=40700,R2=0.9989,DW=0.0819,相对误差的均值、标准差及绝对值的平均值分不为:-0.0005,0.0105,0.82%;表示模型精度的各概率值分不为:P(10%)=100%,P(8%)=100%,P(5%)=100%,P(1%)=65.94%。使用Cochrane-Orcutt修正法能够使模型误差MES=5.607,F=11510,R2=0.9197,DW=1.9171。而相对误差的均值、标准差及绝对值的平均值分不为:

12、-0.0000,0.0026,0.17%;表示模型精度的各概率值分不为:P(10%)=100%,P(8%)=100%,P(5%)=100%,P(1%)=99.4%。接着增在模型的阶数p将是徒劳无益的,在造成过度拟合的同时反而会使模型的拟合精度下降,事实上对p=10的模型其相对误差就差不多足够小了。尽管在相同年龄期内(历史前五年),香港联交所的恒生指数通过动态随机游程检验的时刻要比上证指数晚一些,但在1990年至1995年底同期恒生指数的有效性要比上证指数强的多2。而同期恒生指数修正的AR(p)模型体现出了专门高的精度。p=10时的模型其相对误差就差不多足够小了(常数项不为著,去除):MIt=1

13、.0008(6413.99)LMIt+4.51(56.80)D2-12.19(-36.56)D3+21.61(28.08)D4-26.19(-23.04)D5+21.99(19.58)D6-12.64(-17.0)D7+4.76(14.97)D8-1.06(-13.28)D9+0.11(11.84)D10括号内数值为对应回归参数的t统计值,且MSE=1592,F=4113000,R2=1,DW=0.2097;相对误差的均值、标准差及其绝对值的平均值分不为:0.00007,0.005,.021%;表示模型精度的各概率值分不为:P(10%)=100%,P(8%)=100%,P(5%)=100%,P

14、(1)=95%。即使不使用修正的AR(p)的模型,仅使用随机游走模型也能专门好地预测恒生指数:HSt=1.0005(2107.48)LHSt,其中括号内数值为对应回归参数的t统计量值,且MES=14760,F=4441000,R2=0.9997,相对误差的均值、标准差及绝对值的平均值分不为:-0.0003,0.0151,0.17%;表示模型精度的各概率值分不为:P(10%)=99.92%,P(8%)=99.75%,P(5%)=99.01%,P(1%)=62.35%。可见绝大多相对误差都在5%以下。可见这的确讲明,有效性越强的股市预测模型的精确度也越高。 二、沪、港股市技术指标的协整性检验而技术

15、分析的有效性也是一个始终伴随着证券市场弱有效半强有效强有效的弱进程概念。即证券市场的有效性越强,技术分析的“有效性”相对越弱。反之,在有效性越弱的证券市场,技术分析的“有效性”越强。技术分析有效性的模型检验是通过对上证指数及其两个最常用的技术分析指标:简单算术移动平均指标和乖离率指标建立协整模型来实现的。协整理论的宗旨在于:关于那些建模较为困难的非平稳序列,通过引入与其协整的差分变量,达到使模型成立并提高模型精度的目的。首先,若一个非平稳序列Yt通过d次差分后可变成平稳的,就称此序列具d阶整形,记为YtI(d),平稳序列Yt具有零阶整形,记为YtI(0)。若YtI(1),则YtI(0),即:一

16、阶整形变量的差分为零阶整形。检验整形阶数的迪凯-富拉尔(Dickey-Fuller)方程有三种类型,分不为:第一类检验模型:Yt=Yt-1+t,或:Yt=(-1)Yt-1+t第二类检验模型:Yt=b+Yt-1+t,或:Yt=b+(-1)Yt-1+t第三类检验模型:Yt=b+t+Yt-1+t,或:Yt=c+t+(-1)Yt-1+t假设检验H0=1为单位根检验,对应假设为H11为平稳检验。由一般最小二乘法算得的回归参数的t统计量,不能再直接用于该假设检验,而是用蒙特卡罗法给出的ADF检验临界值,统计量有几种,我们使用T1ADF=t(-1)。若变量Xt=(X1t,,Xnt)的每一个重量差不多上d阶整

17、形,存在一n维向量,使TXtI(d-b),其中db0,则称X1t,Xnt具有(d,b)阶协整,记为XtCI(d,b),称为协整向量。特不当d=b=1时,称Xt为(1,1)阶协整。对(1,1)阶协整的序列,葛兰佳尔提出两步法(Granger,1987)来检验序列的协整关系:(1)用X2t,Xnt来解释变量X1tX1t=1X2t+nXnt+Vt;(2)检验残差Vt的整形阶数,若其为零阶整形(即是平稳序列),则X1t,Xnt便是(1,1)阶协整的,协整向量为(1)中的回归参数1,n。首先分不对上海股指MI、MI5日移动平均线MA5、5日乖离率BIAS的5日移动平均线B5进行整形阶数的检验。在充分比较

18、了不同检验模型的“好”与“坏”之后,决定对MI、MA5、B5均使用第二类增强型的ADF检验方程进行整形阶数的检验,统计量为TADF=(-1)/SE(-1),经检验可知MI、MA5和B5均为1阶整形,结果如表2.1。表2.1MI、MA、AB整形阶数的ADF检验 上海股指恒生股指 变量 ADF 检验类型 显著程度 临界值 ADF 检验类型 显著程度 临界值 MI -4.68 k=2 99% -3.43 -4.01 k=2 99% -3.43 MA5 -3.49 k=2 99% -3.43 -3.70 k=2 99% -3.43 B5 -10.45 k=2 99% -3.43 -10.18 k=2

19、99% -3.43 残差项 -4.15 k=2 99% -3.43 -3.81 k=2 99% -3.43 再按照葛兰佳尔(Granger)的两步法,考察MI、MA5与B5之间的协整关系,即:MIt=0.999(2085.33)MA5t+7.552(109.07)B5t+t其中括号内数字为对应可能参数的t统计量,F=2185000,R2=0.9998,MSE=144.7,自由度=1005,残差Et的均值=0.2235,均方差=12.02。依照葛兰佳尔表示定量,如内生变量Yt与外生变量集Xt=(X1t,X2t,Xnt)构成(1,1)阶协整,协整向量为=(1,1,n)T,(Yt,Xt)I(0)时,

20、应有误差校正模型:其中Yt=TXt+t中的tI(0),k0,kj(j=1,n)的选择应使t成为白噪声。现引入残差的一阶滞后变量Et-1和股指MIt一阶差分变量的滞后变量:Dt-1=L(MIt-MIt-1),Dt-2=L2(MIt-MIt-1),Dt-m=Lm(MIt-MIt-1),MA5t一阶差分的滞后变量:DMt-1=L(MA5t-MA5t-1),DMt-2=L2(MA5t-MA5t-1),DMt-k=Lk(MA5t-MA5t-1),以及B5t一阶差分的滞后变量:DBt-1=L(B5t-B5t-1),DBt-2=L2(B5t-B5t-1),DBt-h=Lh(B5t-B5t-1),可建立协整模

21、型的误差修正模型如下:Et=-0.007(-0.03)+0.13(3.91)Dt-1-0.17(-3.48)DMt-1+0.08(2.10)DMt-2+-0.42(-1.69)DBt-1+0.26(3.80)DBt-2+0.64(24.38)Et-1其中括号内的数值为对应回归参数的t统计量值,且:F=154.1,R2=0.4809,MSE=75.38,DW=1.9964。过拟合F检验结果、误差修正模型的相对误差均值、均方差、绝对值平均值,及表示精度的概率值,如表2.2,由表可确定m=1,k=h=2时的模型“最好”。 表2.2沪指协整误差修正模型的过拟合F检验(=0.01)及可能精度。 协整误差

22、 过拟合 检验 自由 最后 相对 误差绝 误差修正模型的精度 修正阶数 F统计量 临界值 度 均值 均方差 对均值 P(8%) P(5%) P(1%) m=k=h=1 16.1 6.63 1000 10-5 10-2 0.55% 99.7% 99.4% 84.5% m=1,k=h=2 0.7 6.63 997 10-5 10-2 0.56% 99.7% 99.5% 84.8% m=k=h=2 0.5 6.63 996 10-5 10-2 0.56% 99.7% 99.5% 84.6% 恒指协整模型 10-5 10-2 0.43% 100% 99.8% 88.8% 恒生指数与其要紧技术指标之间的

23、协整关系为:MIt=0.9997(6429.94)MA5t+7762(118.13)B5t其中括号内的数值为对应回归参数的t统计量值,且:F=20910000,R2=1.000,MSE=1567。过拟合F检验的结果讲明,有效性相对较强的市场,其协整误差修正模型中要求有更高的阶数,因此也能达到相对更小的相对误差。关于恒生指数的模型不需要进行误差修正,m=k=h=2时模型的精确程度差不多高于上证指数经修正后的协整模型了(见表2.2中最后一行)。既然在股市指数MIt与其两个最经常使用的技术指标简单算术移动平均指标MA5t和乖离率B5t之间存在着协整关系,也确实是讲不管股指是否平稳,MIt与MA5t和

24、B5t的一线性组合之间相差的只是一个白噪声。因此讲明技术分析指标能够在一定精度的前提下,解释股指的变动,也即技术分析是有效的。 三、来自模型检验的启发上海股市目前虽不具备弱有效性,但弱有效性是在逐步增强的。关于这种股市有效性的渐近性质,可从几个方面来验证。例如能够使用不同期限的动态游程统计量验证股市的渐近性质,也能够由各种模型下动态的过拟合F统计量来验证股市有效性的渐近性质。这确实是讲,关于不同股市的有效性比较,或者是对相同股市不同时期的有效性比较,能够通过各种模型的阶数来检验。而这种检验深层次的意义在于,在不能验证一个进展中的股市是有效的时候,只是确定了市场指数不能服从只有一个滞后项的随机游

25、动模型,但它可能服从带有多个滞后项的模型。而且随着股市有效性的由弱到强,市场指数服从的模型阶数越来越少,直到减少到一个时,也就验证了市场指数服从随机游动模型了。下面我们通过一个典型的LARCH模型(Geweke,1986)3来讲明这一点。设随机误差项t遵从条件正态分布:Pt=P0+cPt-1+t,tt-1N(0,ht)ln(ht)=a0+a1ln(2t-1)+apln(2t-p)其中P0表示分离出的趋势,c1为游走倾向,t-1=Pt-1,PXt-2,为给定的条件集合。另外,为保证条件方差为正,应有:a00,ai0,i=1,2P,P由过拟和F检验来确定,F统计量在大样本情况下(样本超过500)的

26、临界值为6.63。通过计算发觉:1991年1月23日至1995年12月17日,上海股指数据的LARCH模型不同阶数的过拟合F检验值分不为:F7=36.66;F10=24.05;F23=16.73;F30=14.21,阶数在30阶以上。1992年2月13日至1995年12月17日,上海股指数据的LARCH模型不同阶数的过拟合F检验值为不为:F14=6.99;F15=6.58;F16=6.77;F17=6.15;F18=6.03,阶数为17较为明确。现在有:Pt=4.51(2.12)+0.994(336.19)Pt-1,括号内为相应可能值的t统计量,且R2=0.989,F=113000,MSE=1

27、137,DW=1.88。1993年1月20日至1995年12月17日,上海股指LARCH模型的过拟合F检验值分不为:F26=7.45;F27=6.89;F28=6.37;F29=6.35,阶数28较为明确。现在有:Pt=8.120(1.84)+0.989(182.91)Pt-1R2=0.9787,F=33460,MSE=997.6,DW=2.0592。1994年1月25日至1995年12月17日,上海股指LARCH模型的过拟合F检验值F1=1.37,以SSE=(ln(H)-Eln(h)2=34.848计,F0=1.18,均明显小于临界值,因此LARCH模型的阶数应为0。现在有:Pt=20.75(3.8)+0.97(87.4)Pt-1,R2=0.942,F=7633,MSE=660.4,DW=1.9825。其中DW统计量的期望值为2.0042,方差为0.008,残差Et(=Pt-20.75-0.97Pt-1)及相对误差Dt(=Et/Pt)的均值、根方差和所处区间分不为:1.726E-9,25.67,-139,178.6;-1.588E-3,0.038,-18.54%,23.39%。ln(ht)=6.512(278.2)+0.005(1.1)ln(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论