




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、苏教版高中数学课件并项求和、错位相减法一、并项求和例1已知数列an(1)nn,求数列 的前n项和Sn.解方法一若n是偶数,若n是奇数,方法二可采用分组求和(略).延伸探究若an(1)nn2,求数列 的前n项和Sn.解若n是偶数,Sn(1222)(3242)(5262)(n1)2n2若n是奇数,Sn(1222)(3242)(5262)(n2)反思感悟并项求和法适用的题型一般地,对于摆动数列适用于并项求和,此类问题需要对项数的奇偶性进行分类讨论,有些摆动型的数列也可采用分组求和.跟踪训练1若数列 的通项公式是an(1)n1(3n2),则a1a2a2 021等于A.3 027 B.3 027 C.3
2、 031 D.3 031解析S2 021(14)(710)(6 0556 058)6 0611 010(3)6 0613 031.二、错位相减法例2求和:Snx2x23x3nxn(x0).当x1时,Snx2x23x3nxn,xSnx22x33x4(n1)xnnxn1,(1x)Snxx2x3xnnxn1反思感悟(1)一般地,如果数列an是等差数列,bn是等比数列,求数列anbn的前n项和时,可采用错位相减法.(2)用错位相减法求和时,应注意:要善于识别题目类型,特别是等比数列公比为负数的情形.在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“SnqSn”的
3、表达式.跟踪训练2已知数列an的前n项和为Sn,数列 是公差为1的等差数列,且a23.(1)求数列an的通项公式;可得Snn(a1n1),a1a22(a11),且a23.解得a11.Snn2.n2时,anSnSn1n2(n1)22n1(n1时也成立).an2n1.(2)设bnan3n,求数列bn的前n项和Tn.解bnan3n(2n1)3n,数列bn的前n项和Tn3332533(2n1)3n,3Tn32333(2n3)3n(2n1)3n1,2Tn32(32333n)(2n1)3n1可得Tn3(n1)3n1.1.知识清单:(1)并项求和.(2)错位相减法求和.2.方法归纳:公式法、错位相减法.3.
4、常见误区:并项求和易忽略总项数的奇偶;错位相减法中要注意相减后的项数、符号及化简.课堂小结随堂演练1.已知在前n项和为Sn的数列 中,a11,an1an2,则S101等于A.97 B.98C.99 D.100解析由an1an2,得anan12,则S101a1(a2a3)(a100a101)125099.12342.数列 的通项公式为an1 ,前n项和为Sn,则S100等于A.50 B.2 400 C.4 900 D.9 900解析a1112,a21,a3132,a41,所以S10010012325272972992123412343.已知等比数列an的前n项和为Sn,若S37,S663,则数列
5、nan的前n项和为A.3(n1)2n B.3(n1)2nC.1(n1)2n D.1(n1)2n解析设等比数列an的公比为q,易知q1,两式相除得1q39,解得q2,进而可得a11,所以ana1qn12n1,所以nann2n1.设数列nan的前n项和为Tn,1234则Tn120221322n2n1,2Tn121222323n2n,1(1n)2n,故Tn1(n1)2n.12341234课时对点练基础巩固12345678910111213141516A.15 B.12 C.12 D.15所以a1a2253,a3a48113,a5a614173,a7a820233,a9a1026293,因此a1a2a
6、103515.123456789101112131415162.已知数列 中,a11,anan13,Sn为其前n项和,则S2 021等于A.3 030 B.3 031 C.3 032 D.3 033解析由题意a22,a31,a42,故奇数项为1,偶数项为2,则S2 021(a1a2)(a3a4)(a2 019a2 020)a2 02131 01013 031.123456789101112131415163.数列 满足a11,a23,且an12anan10(n2),则 的前2020项和为A.8 080 B.4 040 C.4 040 D.0所以a3a4a1a24,同理可得a5a6a7a8a2
7、019a2 0204,所以S2 02041 0104 040.12345678910111213141516A.0 B.100 C.100 D.10 20012345678910111213141516解析anf(n)f(n1)an(1)n(2n1),anan12(n是奇数),a1a2a3a100(a1a2)(a3a4)(a99a100)2222100.12345678910111213141516A.2112 B.32112C.62112 D.9211212345678910111213141516解析n1,log2n0,当0log2n1时,n1,即a10(共1项);当1log2n2时,n2
8、,3,即a2a31(共2项);当2log2n3时,n4,5,6,7,即a4a5a6a72(共4项);当klog2n2 021成立的n的最小值为8.12345678910111213141516所以S100a1a2a3a4a5a6a97a98a99a100 112345678910111213141516123456789101112131415168.已知数列an的前n项和为Sn,且满足Sn2an1(nN*),则数列nan的前n项和Tn为_.(n1)2n1解析Sn2an1(nN*),n1时,a12a11,解得a11,n2时,anSnSn12an1(2an11),化为an2an1,数列an是首项
9、为1,公比为2的等比数列,an2n1.nann2n1.则数列nan的前n项和Tn122322n2n1.2Tn2222(n1)2n1n2n,Tn(n1)2n1.1234567891011121314151612345678910111213141516123456789101112131415163n22n24.1234567891011121314151610.已知an是各项均为正数的等比数列,且a1a26,a1a2a3.(1)求数列an的通项公式;解设数列an的公比为q,又an0,解得a12,q2,所以an2n.12345678910111213141516(2)bn为各项非零的等差数列,其
10、前n项和为Sn,已知S2n1bnbn1,求数列 的前n项和Tn.又S2n1bnbn1,bn10,所以bn2n1.因此Tnc1c2cn123456789101112131415161234567891011121314151612345678910111213141516综合运用11.已知 的前n项和为Sn,a11,当n2时,an2Sn1n,则S2 021的值为A.1 008 B.1 009 C.1 010 D.1 01112345678910111213141516解析由题意,当n2时,可得Sn1Snan,因为an2Sn1n,所以an2(Snan)n,即2Snann,当n3时,2Sn1an1n
11、1,两式相减,可得2ananan11,即anan11,所以a2a31,a4a51,a6a71,12345678910111213141516解析 “兔子数列”的各项为1,1,2,3,5,8,13,21,34,55,此数列被2除后的余数依次为:1,1,0,1,1,0,1,1,0,即b11,b21,b30,b41,b51,b60,T2 022674(b1b2b3)67421 348,12345678910111213141516所以cn(1)n,所以S2 022(11)(11)(11)0.则T2 022S2 0221 348.123456789101112131415161234567891011
12、121314151613.在数列 中,a11,对于任意自然数n,都有an1ann2n,则a15等于A.142152 B.132142C.142153 D.13215312345678910111213141516解析an1ann2n,a2a1121,a3a2222,a4a3323 anan1(n1)2n1,以上n1个等式,累加得ana1121222323(n1)2n1,又2an2a1122223324(n2)2n1(n1)2n, 得a1an222232n1(n1)2n12345678910111213141516an(n2)2n3(n2),a15(152)2153132153.12345678
13、91011121314151614.设Xn1,2,3,n ,对Xn的任意非空子集A,定义f(A)为A中的最大元素,当A取遍Xn的所有非空子集时,对应的f(A)的和为Sn,则S5_.129Xn的任意非空子集A共有2n1个,其中最大值为n的有2n1,最大值为n1的有2n2个,最大值为1的有201个,两式相减得Sn121222n12nn,12345678910111213141516拓广探究1234567891011121314151615.在数列an中,a11,a22,且an2an1(1)n(nN*),则a1a2a51_.676当n为奇数时,an2an0,an1 ;所以a1a2a51261(24650)261 25(250)676.1234567891011121314151616.已知数列an满足a11,an12an(为常数).(1)试探究数列an是不是等比数列,并求an;解因为an12an,所以an12(an).又a11,所以当1时,a10,数列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 港口设施工程技术研究考核试卷
- 2025居民生活供用电合同
- 2025合作合同电子产品收益分配协议书
- 2025办公室租赁合同书样本
- 肇庆市实验中学高二上学期期中考试语文(文)试题
- 垫资服务合同书协议书二零二五年
- 二零二五百世快递业务员劳动合同书
- 大学生职业规划大赛《针灸推拿学专业》生涯发展展示
- 2025房地产合同范本
- 2025建筑工程弱电安装合同范本
- 中国加速康复外科临床实践指南2021
- 山东省大教育联盟学校2024-2025学年高三下学期开学检测化学试题(原卷版+解析版)
- 2025教科版六年级科学下册全册教案【含反思】
- DB43T-稻-再-油生产技术规程
- 中国慢性冠脉综合征患者诊断及管理指南2024版解读
- 课件:《科学社会主义概论(第二版)》第五章
- DB36∕T 1720-2022 牧草裹包青贮技术规程
- 基于BIM技术的建筑工程安全管理应用与探讨
- 基于深度学习的电力系统故障恢复与优化方法研究
- 大数据与人工智能营销知到智慧树章节测试课后答案2024年秋南昌大学
- 第20课 清朝君主专制的强化(导学案)(原卷版)
评论
0/150
提交评论