版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,矩形ABCD内接于O,点P是上一点,连接PB、PC,若AD=2AB,则cosBPC的值为()ABCD2cos30的相反数是()AB
2、CD3如图所示,在平面直角坐标系中A(0,0),B(2,0),AP1B是等腰直角三角形,且P1=90,把AP1B绕点B顺时针旋转180,得到BP2C;把BP2C绕点C顺时针旋转180,得到CP3D,依此类推,则旋转第2017次后,得到的等腰直角三角形的直角顶点P2018的坐标为()A(4030,1)B(4029,1)C(4033,1)D(4035,1)4如图,已知函数y=与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+0的解集是()Ax3B3x0Cx3或x0Dx05如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称
3、图形,则这两枚棋子的坐标是()A黑(3,3),白(3,1)B黑(3,1),白(3,3)C黑(1,5),白(5,5)D黑(3,2),白(3,3)6如图,已知直线,点E,F分别在、上,如果B40,那么( )A20B40C60D807如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为( )ABCD8等腰三角形底角与顶角之间的函数关系是()A正比例函数B一次函数C反比例函数D二次函数9估计+1的值在()A2和3之间B3和4之间C4和5之间D5和6之间10下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图中有5个棋子,图中有10个棋子,图中有16个棋子,则图_中有个棋子
4、( )A31B35C40D50二、填空题(共7小题,每小题3分,满分21分)11如图,AB=AC,要使ABEACD,应添加的条件是 (添加一个条件即可)12如图是一位同学设计的用手电筒来测量某古城墙高度的示意图点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知ABBD,CDBD,测得AB2米,BP3米,PD15米,那么该古城墙的高度CD是_米13若一个圆锥的底面圆的周长是cm,母线长是,则该圆锥的侧面展开图的圆心角度数是_14抛物线(为非零实数)的顶点坐标为_.15若关于x的一元二次方程x2+2xm=0有两个相等的实数根,则m的值为_16如图,正比例函数y1=
5、k1x和反比例函数y2=的图象交于A(1,2),B(1,2)两点,若y1y2,则x的取值范围是_17将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_三、解答题(共7小题,满分69分)18(10分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元)122.535yA(万元)0.40.811.22信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yBax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元(1)求出
6、yB与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?19(5分)在围棋盒中有 x 颗黑色棋子和 y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是;如果往盒中再放进 10 颗黑色棋子,则取得黑色棋子的概率变为求 x 和 y 的值20(8分)我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查其中,国内市场的日销售量y1(万件
7、)与时间t(t为整数,单位:天)的部分对应值如下表所示而国外市场的日销售量y2(万件)与时间t(t为整数,单位:天)的关系如图所示(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t的函数关系式及自变量t的取值范围;(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值21(10分)车辆经过润扬大桥收费站时,4个
8、收费通道 AB、C、D中,可随机选择其中的一个通过一辆车经过此收费站时,选择 A通道通过的概率是 ;求两辆车经过此收费站时,选择不同通道通过的概率22(10分)如图,在ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF(1)求证:四边形BCFE是菱形;(2)若CE=4,BCF=120,求菱形BCFE的面积23(12分)某校组织学生去9km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达己知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?24(14分)如图,在RtABC中,C=90,A
9、C=AB求证:B=30请填空完成下列证明证明:如图,作RtABC的斜边上的中线CD,则 CD=AB=AD ( )AC=AB,AC=CD=AD 即ACD是等边三角形A= B=90A=30参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】连接BD,根据圆周角定理可得cosBDC=cosBPC,又BD为直径,则BCD=90,设DC为x,则BC为2x,根据勾股定理可得BD=x,再根据cosBDC=,即可得出结论.【详解】连接BD,四边形ABCD为矩形,BD过圆心O,BDC=BPC(圆周角定理)cosBDC=cosBPCBD为直径,BCD=90,=,设DC为x,则BC为2
10、x,BD=x,cosBDC=,cosBDC=cosBPC,cosBPC=.故答案选A.【点睛】本题考查了圆周角定理与勾股定理,解题的关键是熟练的掌握圆周角定理与勾股定理的应用.2、C【解析】先将特殊角的三角函数值代入求解,再求出其相反数【详解】cos30=,cos30的相反数是,故选C【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及相反数的概念3、D【解析】根据题意可以求得P1,点P2,点P3的坐标,从而可以发现其中的变化的规律,从而可以求得P2018的坐标,本题得以解决【详解】解:由题意可得,点P1(1,1),点P2(3,-1),点P3(5,1),P201
11、8的横坐标为:22018-1=4035,纵坐标为:-1,即P2018的坐标为(4035,-1),故选:D【点睛】本题考查了点的坐标变化规律,解答本题的关键是发现各点的变化规律,求出相应的点的坐标4、C【解析】首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+1的解集【详解】函数y=与函数y=ax2+bx的交点P的纵坐标为1,1=,解得:x=3,P(3,1),故不等式ax2+bx+1的解集是:x3或x1故选C【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标5、A【解析】首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可【详解】解:A、
12、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确;B、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误故选:A【点睛】此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键6、C【解析】根据平行线的性质,可得的度数,再根据以及平行线的性质,即可得出的度数【详解】,故选C【点睛】本题主要考查了平行线的性质的运用
13、,解题时注意:两直线平行,同旁内角互补,且内错角相等7、A【解析】试题解析:一个斜坡长130m,坡顶离水平地面的距离为50m,这个斜坡的水平距离为:=10m,这个斜坡的坡度为:50:10=5:1故选A点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式8、B【解析】根据一次函数的定义,可得答案【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=x+90,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B【点睛】本题
14、考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.9、B【解析】分析:直接利用23,进而得出答案详解:23,3+14,故选B点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键10、C【解析】根据题意得出第n个图形中棋子数为1+2+3+n+1+2n,据此可得【详解】解:图1中棋子有5=1+2+12个,图2中棋子有10=1+2+3+22个,图3中棋子有16=1+2+3+4+32个,图6中棋子有1+2+3+4+5+6+7+62=40个,故选C【点睛】本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况二、填空题(共7
15、小题,每小题3分,满分21分)11、AE=AD(答案不唯一)【解析】要使ABEACD,已知AB=AC,A=A,则可以添加AE=AD,利用SAS来判定其全等;或添加B=C,利用ASA来判定其全等;或添加AEB=ADC,利用AAS来判定其全等等(答案不唯一)12、10【解析】首先证明ABPCDP,可得=,再代入相应数据可得答案【详解】如图,由题意可得:APE=CPE,APB=CPD,ABBD,CDBD,ABP=CDP=90,ABPCDP,=,AB=2米,BP=3米,PD=15米,=,解得:CD=10米.故答案为10.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.13、
16、【解析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可【详解】圆锥的底面圆的周长是,圆锥的侧面扇形的弧长为 cm,解得:故答案为【点睛】此题考查弧长的计算,解题关键在于求得圆锥的侧面积14、【解析】【分析】将抛物线的解析式由一般式化为顶点式,即可得到顶点坐标.【详解】y=mx2+2mx+1=m(x2+2x)+1=m(x2+2x+1-1)+1=m(x+1)2 +1-m,所以抛物线的顶点坐标为(-1,1-m),故答案为(-1,1-m).【点睛】本题考查了抛物线的顶点坐标,把抛物线的解析式转化为顶点式是解题的关键.15、-1【解析】根据关
17、于x的一元二次方程x2+2xm=0有两个相等的实数根可知=0,求出m的取值即可【详解】解:由已知得=0,即4+4m=0,解得m=-1故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的两个实数根;当=0时,方程有两个相等的两个实数根;当0时,方程无实数根16、x2或0 x2【解析】仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.【详解】解:如图,结合图象可得:当x2时,y2y2;当2x0时,y2y2;当
18、0 x2时,y2y2;当x2时,y2y2综上所述:若y2y2,则x的取值范围是x2或0 x2故答案为x2或0 x2【点睛】本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x 的取值范围.17、y=2x+1【解析】分析:直接根据函数图象平移的法则进行解答即可详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;故答案为y=2x+1点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键三、解答题(共7小题,满分69分)18、 (1)yB=0.2x2+1.6x(2)一次函数,yA=0.4x(3)该企业投资A产
19、品12万元,投资B产品3万元,可获得最大利润7.8万元【解析】(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值【详解】解:(1)yB=0.2x2+1.6x, (2)一次函数,yA=0.4x, (3)设投资B产品x万元,投资A产品(15x)万元,投资两种产品共获利W万元, 则W=(0.2x2+1.6x)+0.4(15x)=0.2x2+1.2x+6=0.2(x3)2+7.8, 当x=3时
20、,W最大值=7.8, 答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元.19、x=15,y=1【解析】根据概率的求法:在围棋盒中有x颗黑色棋子和y颗白色棋子,共x+y颗棋子,如果它是黑色棋子的概率是,有成立化简可得y与x的函数关系式;(2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y颗棋子,则取得黑色棋子的概率变为,结合(1)的条件,可得,解可得x=15,y=1【详解】依题意得,化简得,解得, .,检验当x=15,y=1时,x=15,y=1是原方程的解,经检验,符合题意.答:x=15,y=1.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性
21、相同,其中事件A出现m种结果,那么事件A的概率P(A)=20、(1)y1=t(t30)(0t30);(2)y2=;(3)上市第20天,国内、外市场的日销售总量y最大,最大值为80万件【解析】(1)根据题意得出y1与t之间是二次函数关系,然后利用待定系数法求出函数解析式;(2)利用待定系数法分别求出两个函数解析式,从而得出答案;(3)分0t20、t=20和20t30三种情况根据y=y1+y2求出函数解析式,然后根据二次函数的性质得出最值,从而得出整体的最值【详解】解:(1)由图表数据观察可知y1与t之间是二次函数关系,设y1=a(t0)(t30) 再代入t=5,y1=25可得a=y1=t(t30
22、)(0t30)(2)由函数图象可知y2与t之间是分段的一次函数由图象可知:0t20时,y2=2t,当20t30时,y2=4t+120,y2=,(3)当0t20时,y=y1+y2=t(t30)+2t=80(t20)2 , 可知抛物线开口向下,t的取值范围在对称轴左侧,y随t的增大而增大,所以最大值小于当t=20时的值80,当20t30时,y=y1+y2=t(t30)4t+120=125(t5)2 , 可知抛物线开口向下,t的取值范围在对称轴右侧,y随t的增大而减小,所以最大值为当t=20时的值80,故上市第20天,国内、外市场的日销售总量y最大,最大值为80万件21、(1);(2)【解析】试题分析:(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论试题解析:(1)选择 A通道通过的概率=,故答案为;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中医医学经络腧穴学课件-奇穴
- 《学前社会教育》课件
- 2025届海南省部分学校高三上学期全真模拟(二)历史试卷(解析版)
- 2024-2025学年浙江省台州市十校联考高一上学期期中考试历史试题(解析版)
- 《物流仓储管理》课件
- 单位管理制度集合大全员工管理篇
- 《物流管理运输管理》课件
- 单位管理制度汇编大全员工管理
- 单位管理制度合并汇编【职工管理】
- 单位管理制度分享合集职员管理
- 儿童涂色画空白填色图(100张文本打印版)
- 2024版合同及信息管理方案
- 压缩空气(教学设计)-2024-2025学年三年级上册科学教科版
- JGT266-2011 泡沫混凝土标准规范
- 输配电线路基础知识
- 2015年日历表(超清晰A4打印版)
- 剪式汽车举升机设计
- 健康证体检表
- 大气课程设计---袋式除尘器
- 市政桥梁工程施工
- 长线法节段梁预制施工方案wgm
评论
0/150
提交评论