版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列运算结果正确的是( )A3a2a2 = 2Ba2a3= a6C(a2)3 = a6Da2a2 = a2下列图形中,既是轴对称图形又是中心对称图形的是()A等边三角形B菱形C平行
2、四边形D正五边形3如图,AB是O的弦,半径OCAB 于D,若CD=2,O的半径为5,那么AB的长为()A3B4C6D84一次函数y=ax+b与反比例函数,其中ab0,a、b为常数,它们在同一坐标系中的图象可以是()ABCD5一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )A B C D 6如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,按此规律作下去,若A1B1O=,则A10B10O=()ABCD7-3的倒数是( )A3B13C-13D-38如图,ADBEC
3、F,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB1,BC3,DE2,则EF的长为()A4B.5C6D89下列函数是二次函数的是( )ABCD10下列各数中负数是()A(2) B|2| C(2)2 D(2)311在平面直角坐标系内,点P(a,a+3)的位置一定不在()A第一象限B第二象限C第三象限D第四象限12在下列四个图案中既是轴对称图形,又是中心对称图形的是( )ABC.D二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,随机闭合开关,中的两个,能让两盏灯泡和同时发光的概率为_14化简:=_15函数y=1x-1的自变量x的取值范围是 16某校九年级(
4、1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是_岁17如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建筑物的高是_ 18要使式子有意义,则的取值范围是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB求证:ABE=EAD;若AEB=2ADB,求证:四边形ABCD是菱形20(6分)计算:+( )1+|1|4sin4521(6分)如图抛物线y=ax2+bx,过点A(4,0)和点B(6,2),四边形OCB
5、A是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点(1)求抛物线的解析式,并直接写出点D的坐标;(2)当AMN的周长最小时,求t的值;(3)如图,过点M作MEx轴,交抛物线y=ax2+bx于点E,连接EM,AE,当AME与DOC相似时请直接写出所有符合条件的点M坐标22(8分)一道选择题有四个选项.(1)若正确答案是,从中任意选出一项,求选中的恰好是正确答案的概率;(2)若正确答案是,从中任意选择两项,求选中的恰好是正确答案的概率.23(8分)如图所示,在ABC中,AB=CB,以BC为直径的O交AC于点E,过点E作O的切线交AB于点F(1)
6、求证:EFAB;(2)若AC=16,O的半径是5,求EF的长24(10分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率50.26180.36714880.16合计1 (1)统计表中的_,_,_;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.25(10分)为了提高中学生身体素质,学
7、校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整)这次调查中,一共调查了_名学生;请补全两幅统计图;若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率26(12分)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF求证:AF=CE27(12分)如图,已知矩形 OABC
8、的顶点A、C分别在 x 轴的正半轴上与y轴的负半轴上,二次函数的图像经过点B和点C(1)求点 A 的坐标;(2)结合函数的图象,求当 y0 时,x 的取值范围参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】选项A, 3a2a2 = 2 a2;选项B, a2a3= a5;选项C, (a2)3 = a6;选项D,a2a2 = 1.正确的只有选项C,故选C.2、B【解析】在平面内,如果一个图形沿一条直线对折,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内一个图形绕某个点旋转180,如果旋转前后的图形能互相重
9、合,那么这个图形叫做中心对称图形,分别判断各选项即可解答.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;B、菱形是轴对称图形,也是中心对称图形,故此选项正确;C、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;D、正五边形是轴对称图形,不是中心对称图形,故此选项错误故选:B【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握是解题的关键.3、D【解析】连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1【详解】连接OAO的半径为5,CD=2,OD=5-2=3,即OD=3;
10、又AB是O的弦,OCAB,AD=AB;在直角三角形ODC中,根据勾股定理,得AD=4,AB=1故选D【点睛】本题考查了垂径定理、勾股定理解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度4、C【解析】根据一次函数的位置确定a、b的大小,看是否符合ab0,交y轴负半轴,则b0,满足ab0,反比例函数y= 的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a0,满足ab0,ab0,交y轴负半轴,则b0,满足ab0,反比例函数y=的图象过一、三象限,所以此选项正确;D. 由一次函数图象过二、四象限,得a0,交y轴负半轴,则b0,与已知相
11、矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小5、B【解析】朝上的数字为偶数的有3种可能,再根据概率公式即可计算.【详解】依题意得P(朝上一面的数字是偶数)=故选B.【点睛】此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.6、B【解析】根据等腰三角形两底角相等用表示出A2B2O,依此类推即可得到结论【详解】B1A2B1B2,A1B1O,A2B2O,同理A3B3O,A4B4O,AnBnO,A10B10O,故选B【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,
12、分子不变的规律是解题的关键7、C【解析】由互为倒数的两数之积为1,即可求解【详解】-3-13=1,-3的倒数是-13.故选C8、C【解析】解:ADBECF,根据平行线分线段成比例定理可得,即,解得EF=6,故选C.9、C【解析】根据一次函数的定义,二次函数的定义对各选项分析判断利用排除法求解【详解】A. y=x是一次函数,故本选项错误;B. y=是反比例函数,故本选项错误;C.y=x-2+x2是二次函数,故本选项正确;D.y= 右边不是整式,不是二次函数,故本选项错误.故答案选C.【点睛】本题考查的知识点是二次函数的定义,解题的关键是熟练的掌握二次函数的定义.10、B【解析】首先利用相反数,绝
13、对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可【详解】A、-(-2)=2,是正数;B、-|-2|=-2,是负数;C、(-2)2=4,是正数;D、-(-2)3=8,是正数故选B【点睛】此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键11、D【解析】判断出P的横纵坐标的符号,即可判断出点P所在的相应象限.【详解】当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选D.【点睛】本题考查了点的坐标的知识点,解题的关键是由a的取值判断
14、出相应的象限.12、B【解析】试题分析:根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,因此:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意故选B考点:轴对称图形和中心对称图形二、填空题:(本大题共6个小题,每小题4分,共24分)13
15、、【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两盏灯泡同时发光的情况,再利用概率公式求解即可求得答案【详解】解:画树状图得:由树状图得:共有6种结果,且每种结果的可能性相同,其中能让两盏灯泡同时发光的是闭合开关为:K1、K3与K3、K1共两种结果,能让两盏灯泡同时发光的概率,故答案为:【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比14、m【解析】解:原式=m故答案为m15、x1【解析】依题意可得x-10,解得x1,所
16、以函数的自变量x的取值范围是x116、1【解析】根据中位数的定义找出第20和21个数的平均数,即可得出答案【详解】解:该班有40名同学,这个班同学年龄的中位数是第20和21个数的平均数14岁的有1人,1岁的有21人,这个班同学年龄的中位数是1岁【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键17、10.5【解析】先证AEBABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BEAC,DCACBE/DC,AEBADC,即:,CD10.5(m).故答案为10.5.【点睛】本题考查了相似的判
17、定和性质.利用相似的性质列出含所求边的比例式是解题的关键.18、【解析】根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.【详解】由题意得:2-x0,解得:x2,故答案为x2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;(2)证明见解析【解析】(1)根据平行四边形的对边互相平行可得ADBC,再根据两直线平行,内错角相等可得AEB=EAD,根据等边对等角可得ABE=AEB,即可得证(2)根据两直线平行,内错角相等可得ADB=DBE,然后求出ABD=ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边
18、形是菱形证明即可【详解】证明:(1)在平行四边形ABCD中,ADBC,AEB=EADAE=AB,ABE=AEBABE=EAD(2)ADBC,ADB=DBEABE=AEB,AEB=2ADB,ABE=2ADBABD=ABEDBE=2ADBADB=ADBAB=AD又四边形ABCD是平行四边形,四边形ABCD是菱形20、 【解析】根据绝对值的概念、特殊三角函数值、负整数指数幂、二次根式的化简计算即可得出结论【详解】解:+()1+|1|1sin15=23+11=23+12=1【点睛】此题主要考查了实数的运算,负指数,绝对值,特殊角的三角函数,熟练掌握运算法则是解本题的关键21、(1)y=x2x,点D的坐
19、标为(2,);(2)t=2;(3)M点的坐标为(2,0)或(6,0)【解析】(1)利用待定系数法求抛物线解析式;利用配方法把一般式化为顶点式得到点D的坐标;(2)连接AC,如图,先计算出AB=4,则判断平行四边形OCBA为菱形,再证明AOC和ACB都是等边三角形,接着证明OCMACN得到CM=CN,OCM=ACN,则判断CMN为等边三角形得到MN=CM,于是AMN的周长=OA+CM,由于CMOA时,CM的值最小,AMN的周长最小,从而得到t的值;(3)先利用勾股定理的逆定理证明OCD为直角三角形,COD=90,设M(t,0),则E(t,t2-t),根据相似三角形的判定方法,当时,AMECOD,
20、即|t-4|:4=|t2-t |:,当时,AMEDOC,即|t-4|:=|t2-t |:4,然后分别解绝对值方程可得到对应的M点的坐标【详解】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,抛物线解析式为y=x2-x;y=x2-x =-2) 2-;点D的坐标为(2,-);(2)连接AC,如图,AB=4,而OA=4,平行四边形OCBA为菱形,OC=BC=4,C(2,2),AC=4,OC=OA=AC=AB=BC,AOC和ACB都是等边三角形,AOC=COB=OCA=60,而OC=AC,OM=AN,OCMACN,CM=CN,OCM=ACN,OCM+ACM=60,ACN+ACM=6
21、0,CMN为等边三角形,MN=CM,AMN的周长=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,当CMOA时,CM的值最小,AMN的周长最小,此时OM=2,t=2;(3)C(2,2),D(2,-),CD=,OD=,OC=4,OD2+OC2=CD2,OCD为直角三角形,COD=90,设M(t,0),则E(t,t2-t),AME=COD,当时,AMECOD,即|t-4|:4=|t2-t |:,整理得|t2-t|=|t-4|,解方程t2-t =(t-4)得t1=4(舍去),t2=2,此时M点坐标为(2,0);解方程t2-t =-(t-4)得t1=4(舍去),t2=-2(舍去);当时,AM
22、EDOC,即|t-4|:=|t2-t |:4,整理得|t2-t |=|t-4|,解方程t2-t =t-4得t1=4(舍去),t2=6,此时M点坐标为(6,0);解方程t2-t =-(t-4)得t1=4(舍去),t2=-6(舍去);综上所述,M点的坐标为(2,0)或(6,0)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、平行四边形的性质和菱形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;熟练掌握相似三角形的判定方法;会运用分类讨论的思想解决数学问题22、(1);(2)【解析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能
23、的结果数,再找出选中的恰好是正确答案A,B的结果数,然后根据概率公式求解【详解】解:(1)选中的恰好是正确答案A的概率为;(2)画树状图:共有12种等可能的结果数,其中选中的恰好是正确答案A,B的结果数为2,所以选中的恰好是正确答案A,B的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率23、(1)证明见解析;(2) 4.8.【解析】(1)连结OE,根据等腰三角形的性质可得OEC=OCA、A=OCA,即可得A=OEC,由同位角相等,两直线平行即可判定OEAB,又因EF是O的切线,
24、根据切线的性质可得EFOE,由此即可证得EFAB;(2)连结BE,根据直径所对的圆周角为直角可得,BEC=90,再由等腰三角形三线合一的性质求得AE=EC =8,在RtBEC中,根据勾股定理求的BE=6,再由ABE的面积=BEC的面积,根据直角三角形面积的两种表示法可得86=10EF,由此即可求得EF=4.8.【详解】(1)证明:连结OEOE=OC,OEC=OCA,AB=CB,A=OCA,A=OEC,OEAB,EF是O的切线,EFOE,EFAB(2)连结BEBC是O的直径,BEC=90, 又AB=CB,AC=16,AE=EC=AC=8,AB=CB=2BO=10,BE=,又ABE的面积=BEC的
25、面积,即86=10EF,EF=4.8.【点睛】本题考查了切线的性质定理、圆周角定理、等腰三角形的性质与判定、勾股定理及直角三角形的两种面积求法等知识点,熟练运算这些知识是解决问题的关键.24、(1)10,0.28,50(2)图形见解析(3)6.4(4)528【解析】分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;(2)根据a的值画出条形图即可;(3)根据平均数的定义计算即可;(4)用样本估计总体的思想解决问题即可;详解:(1)由题意c=50,a=500.2=10,b=0.28,c=50;故答案为10,0.28,50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为:(510+618+714+88)50=32050=6.4(本)(4)该校七年级学生课外阅读7本及以上的人数为:(0.28+0.16)1200=528(人)点睛:本题考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论