版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,将边长为8的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是( )A3cmB4cmC5cmD6cm2如图,在直角坐标系xOy中,若抛物线l:yx2+bx+c(b,c为
2、常数)的顶点D位于直线y2与x轴之间的区域(不包括直线y2和x轴),则l与直线y1交点的个数是()A0个B1个或2个C0个、1个或2个D只有1个3对于实数x,我们规定x表示不大于x的最大整数,如4=4,=1,2.5=3.现对82进行如下操作:82 =9 =3 =1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A1B2C3D44如图是反比例函数(k为常数,k0)的图象,则一次函数的图象大致是( )ABCD5如图,已知ABCD,ADCD,140,则2的度数为()A60B65C70D756扇形的半径为30cm,圆心角为120,用它做成一个圆锥的侧面,则圆锥底面半
3、径为( )A10cmB20cmC10cmD20cm7计算的结果是( )A1B-1CD8反比例函数y=(a0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MCx轴于点C,交y=的图象于点A;MDy轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:SODB=SOCA;四边形OAMB的面积不变;当点A是MC的中点时,则点B是MD的中点其中正确结论的个数是( )A0B1C2D39已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是( )ABCD10估计1的值在()A1和2之间B2和3之间C3和4之间D4和5之间二、填空题(共7小题,每小题3分,满分21分
4、)11如图,在ABC中,B40,C45,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则DAE_12对于一切不小于2的自然数n,关于x的一元二次方程x2(n+2)x2n2=0的两个根记作an,bn(n2),则_13已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_.14如图,已知点A是一次函数yx(x0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y (x0)的图象过点B,C,若OAB的面积为5,则ABC的面积是_15图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而
5、成(不重叠,无缝隙)图乙种,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为_cm16如图,ABC中,DE垂直平分AC交AB于E,A=30,ACB=80,则BCE=_ 1727的立方根为 三、解答题(共7小题,满分69分)18(10分)如图所示是一幢住房的主视图,已知:,房子前后坡度相等,米,米,设后房檐到地面的高度为米,前房檐到地面的高度米,求的值.19(5分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30,已知测角仪高AB为1.5米
6、,求拉线CE的长(结果保留根号)20(8分)如图,在平面直角坐标系中,抛物线yx2mxn经过点A(3,0)、B(0,3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t分别求出直线AB和这条抛物线的解析式若点P在第四象限,连接AM、BM,当线段PM最长时,求ABM的面积是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由21(10分)(本题满分8分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F(1)求证:四边形BDFC是平行四边形;(2)若BCD是等腰三角形
7、,求四边形BDFC的面积22(10分)问题提出(1)如图1,正方形ABCD的对角线交于点O,CDE是边长为6的等边三角形,则O、E之间的距离为 ;问题探究(2)如图2,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD上一动点,求A、P之间的最大距离;问题解决(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MN
8、AD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离23(12分)先化简,再计算: 其中24(14分)如图,在O中,弦AB与弦CD相交于点G,OACD于点E,过点B的直线与CD的延长线交于点F,ACBF(1)若FGB=FBG,求证:BF是O的切线;(2)若tanF=,CD=a,请用a表示O的半径;(3)求证:GF2GB2=DFGF参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】分析:根据折叠的性质,只要求出DN就可以求出NE,在直角CEN中,若设CN=x,则
9、DN=NE=8x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长详解:设CN=xcm,则DN=(8x)cm,由折叠的性质知EN=DN=(8x)cm,而EC=BC=4cm,在RtECN中,由勾股定理可知EN2=EC2+CN2,即(8x)2=16+x2,整理得16x=48,所以x=1故选:A点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题2、C【解析】根据题意,利用分类讨论的数学思想可以得到l与直线y1交点的个数,从而可以解答本题【详解】抛物线l:yx2+bx+c(b,c为常数)的顶点D位于直线y2与x轴之间的区域,开口向下
10、,当顶点D位于直线y1下方时,则l与直线y1交点个数为0,当顶点D位于直线y1上时,则l与直线y1交点个数为1,当顶点D位于直线y1上方时,则l与直线y1交点个数为2,故选C【点睛】考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答3、C【解析】分析:x表示不大于x的最大整数,依据题目中提供的操作进行计算即可详解:121对121只需进行3次操作后变为1.故选C点睛:本题是一道关于无理数的题目,需要结合定义的新运算和无理数的估算进行求解.4、B【解析】根据图示知,反比例函数的图象位于第一、三象限,k0,一次函数y=kxk的图象与y轴的交点在y
11、轴的负半轴,且该一次函数在定义域内是增函数,一次函数y=kxk的图象经过第一、三、四象限;故选:B.5、C【解析】由等腰三角形的性质可求ACD70,由平行线的性质可求解【详解】ADCD,140,ACD70,ABCD,2ACD70,故选:C【点睛】本题考查了等腰三角形的性质,平行线的性质,是基础题6、A【解析】试题解析:扇形的弧长为:=20cm,圆锥底面半径为202=10cm,故选A考点:圆锥的计算7、C【解析】原式通分并利用同分母分式的减法法则计算,即可得到结果【详解】解:=,故选:C.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键8、D【解析】根据反比例函数的性质和比例系数
12、的几何意义逐项分析可得出解.【详解】由于A、B在同一反比例函数y=图象上,由反比例系数的几何意义可得SODB=SOCA=1,正确;由于矩形OCMD、ODB、OCA为定值,则四边形MAOB的面积不会发生变化,正确;连接OM,点A是MC的中点,则SODM=SOCM=,因SODB=SOCA=1,所以OBD和OBM面积相等,点B一定是MD的中点正确;故答案选D考点:反比例系数的几何意义.9、D【解析】试题分析:D选项中作的是AB的中垂线,PA=PB,PB+PC=BC,PA+PC=BC故选D考点:作图复杂作图10、B【解析】根据,可得答案.【详解】解:,1的值在2和3之间.故选B.【点睛】本题考查了估算
13、无理数的大小,先确定的大小,在确定答案的范围.二、填空题(共7小题,每小题3分,满分21分)11、10【解析】根据线段的垂直平分线得出AD=BD,AE=CE,推出B=BAD,C=CAE,求出BAD+CAE的度数即可得到答案【详解】点D、E分别是AB、AC边的垂直平分线与BC的交点,AD=BD,AE=CE,B=BAD,C=CAE,B=40,C=45,B+C=85,BAD+CAE=85,DAE=BAC-(BAD+CAE)=180-85-85=10,故答案为10【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理,线段的垂直平分线的性质等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的
14、关键12、【解析】试题分析:由根与系数的关系得:,则, 则,原式=点睛:本题主要考查的就是一元二次方程的韦达定理以及规律的整理,属于中等题型解决这个问题的关键就是要想到使用韦达定理,然后根据计算的法则得出规律,从而达到简便计算的目的13、(1,4).【解析】试题分析:把A(0,3),B(2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).考点:抛物线的顶点.14、 【解析】如图,过C作CDy轴于D,交AB于E设AB=2a,则BE=AE=CE=a,再设A(x,x),则B(x,x+2a)、C(x+a,x+a),再由B、C在反比例函数的图象上可得x(x+2a)=(x+
15、a)(x+a),解得x=3a,由OAB的面积为5求得ax=5,即可得a2=,根据SABC=ABCE即可求解.【详解】如图,过C作CDy轴于D,交AB于EABx轴,CDAB,ABC是等腰直角三角形,BE=AE=CE,设AB=2a,则BE=AE=CE=a,设A(x,x),则B(x,x+2a),C(x+a,x+a),B、C在反比例函数的图象上,x(x+2a)=(x+a)(x+a),解得x=3a,SOAB=ABDE=2ax=5,ax=5,3a2=5,a2=,SABC=ABCE=2aa=a2=故答案为:【点睛】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上
16、的点符合反比例函数的关系式是关键15、【解析】试题分析:根据,EF=4可得:AB=和BC的长度,根据阴影部分的面积为54可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为,则菱形的周长为:4=.考点:菱形的性质.16、1【解析】根据ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出ACE=A=30,再根据ACB=80即可解答【详解】DE垂直平分AC,A=30,AE=CE,ACE=A=30,ACB=80,BCE=80-30=1故答案为:117、1【解析】找到立方等于27的数即可解:11=27,27的立方根是1,故答案为1考查了求一个数的立方根,用到的知识点为:开
17、方与乘方互为逆运算三、解答题(共7小题,满分69分)18、【解析】过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,由后坡度AB与前坡度AC相等知BAD=CAE=30,从而得出BD=2、CE=3,据此可得【详解】解:过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,房子后坡度AB与前坡度AC相等,BAD=CAE,BAC=120,BAD=CAE=30,在直角ABD中,AB=4米,BD=2米,在直角ACE中,AC=6米,CE=3米,a-b=1米【点睛】本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是根据题意构建直角三角形,并熟练掌握坡度坡角的概念
18、19、CE的长为(4+)米【解析】由题意可先过点A作AHCD于H在RtACH中,可求出CH,进而CD=CH+HD=CH+AB,再在RtCED中,求出CE的长【详解】过点A作AHCD,垂足为H,由题意可知四边形ABDH为矩形,CAH=30,AB=DH=1.5,BD=AH=6,在RtACH中,tanCAH=,CH=AHtanCAH,CH=AHtanCAH=6tan30=6=2(米),DH=1.5,CD=2+1.5,在RtCDE中,CED=60,sinCED=,CE=(4+)(米),答:拉线CE的长为(4+)米考点:解直角三角形的应用-仰角俯角问题20、 (1)抛物线的解析式是.直线AB的解析式是.
19、(2) .(3)P点的横坐标是或.【解析】(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,3)分别代入y=x2+mx+n与y=kx+b,得到关于m、n的两个方程组,解方程组即可;(2)设点P的坐标是(t,t3),则M(t,t22t3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t3)(t22t3)=t2+3t,然后根据二次函数的最值得到当t=时,PM最长为=,再利用三角形的面积公式利用SABM=SBPM+SAPM计算即可;(3)由PMOB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM
20、最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t22t3)(t3)=3;当P在第三象限:PM=OB=3,t23t=3,分别解一元二次方程即可得到满足条件的t的值【详解】解:(1)把A(3,0)B(0,-3)代入,得解得所以抛物线的解析式是.设直线AB的解析式是,把A(3,0)B(0,)代入,得解得所以直线AB的解析式是.(2)设点P的坐标是(),则M(,),因为在第四象限,所以PM=,当PM最长时,此时=.(3)若存在,则可能是:P在第四象限:平行四边形OBMP ,PM=OB=3, PM最长时,所以不可能.P在第一象限平行四边形OBPM: PM=OB=3,解得,(舍去),所以P点的
21、横坐标是.P在第三象限平行四边形OBPM:PM=OB=3,解得(舍去),所以P点的横坐标是.所以P点的横坐标是或.21、(1)见解析;(2)62或35【解析】试题分析:(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:BD=BC,BD=CD,BC=CD,分别求四边形的面积试题解析:(1)证明:A=ABC=90AFBCCBE=DFE,BCE=FDEE是边CD的中点CE=DEBCEFDE(AAS)BE=EF四边形BDFC是平行四边形(2)若BCD是等腰三角形若BD=DC在RtABD中,AB=BD2-AD2=9
22、-1=22四边形BDFC的面积为S=223=62;若BD=DC过D作BC的垂线,则垂足为BC得中点,不可能;若BC=DC过D作DGBC,垂足为G在RtCDG中,DG=DC2-GC2=9-4=5四边形BDFC的面积为S=35考点:三角形全等,平行四边形的判定,勾股定理,四边形的面积22、(1);(2);(2)小贝的说法正确,理由见解析,【解析】(1)连接AC,BD,由OE垂直平分DC可得DH长,易知OH、HE长,相加即可;(2)补全O,连接AO并延长交O右半侧于点P,则此时A、P之间的距离最大,在RtAOD中,由勾股定理可得AO长,易求AP长;(1)小贝的说法正确,补全弓形弧AD所在的O,连接O
23、N,OA,OD,过点O作OEAB于点E,连接BO并延长交O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,在RtANO中,设AO=r,由勾股定理可求出r,在RtOEB中,由勾股定理可得BO长,易知BP长.【详解】解:(1)如图1,连接AC,BD,对角线交点为O,连接OE交CD于H,则OD=OCDCE为等边三角形,ED=EC,OD=OCOE垂直平分DC,DHDC=1四边形ABCD为正方形,OHD为等腰直角三角形,OH=DH=1,在RtDHE中,HEDH=1,OE=HE+OH=11;(2)如图2,补全O,连接AO并延长交O右半侧于点P,则此时A、P之间的距离最大,在RtAOD中,AD=6,DO=1,AO1, AP=AO+OP=11;(1)小贝的说法正确理由如下,如图1,补全弓形弧AD所在的O,连接ON,OA,OD,过点O作OEAB于点E,连接BO并延长交O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,由题意知,点N为AD的中点,ANAD=1.6,ONAD,在RtANO中,设AO=r,则ON=r1.2AN2+ON2=AO2,1.62+(r1.2)2=r2,解得:r,AE=ON1.2,在RtOEB中,OE=AN=1.6,BE=AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国油画布行业投资前景及策略咨询研究报告
- 2024至2030年高速刮墨刀项目投资价值分析报告
- 2024至2030年角式气砂轮机项目投资价值分析报告
- 2024至2030年耐磨钢三叉管项目投资价值分析报告
- 2024至2030年水晶屏风笔座项目投资价值分析报告
- 2024至2030年宝石工艺品项目投资价值分析报告
- 2024至2030年LLDPE黑色护套料项目投资价值分析报告
- 2024年落叶椽材项目可行性研究报告
- 2024年水壶密封圈项目可行性研究报告
- 2024年稀土铝合金、铜合金材料项目提案报告模板
- N2000色谱工作站操作说明书
- 战略销售蓝表-中文版
- MSA - AIAG Manual--d2表
- 自动化系统现场运行管理规定
- 欧盟最新农残标准
- 现代小说选读:鲁迅《风波》.ppt
- 河大版信息技术小学四年级上册教案全册
- 空调管道施工方案-
- 药学科研选题及实践经验PPT课件
- 随访平台解决方案.docx
- 二层式升降横移自动立体车库结构设计(机械CAD图纸)
评论
0/150
提交评论