版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列分式是最简分式的是( )ABCD2-2的倒数是( )A-2BCD23中国在第二十三届冬奥会闭幕式上奉献了2022相约北京的文艺表演,会后表演视频在网络上推出,即刻转发量就超过81
2、0000这个数用科学记数法表示为()A8.1106B8.1105C81105D811044数据3、6、7、1、7、2、9的中位数和众数分别是()A1和7B1和9C6和7D6和95二次函数y=ax+bx+c(a,b,c为常数)中的x与y的部分对应值如表所示:x-1013y 33下列结论:(1)abc0(2)当x1时,y的值随x值的增大而减小;(3)16a+4b+c0(4)x=3是方程ax+(b-1)x+c=0的一个根;其中正确的个数为( )A4个B3个C2个D1个6如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为()A7B8C9D107一个几何体的三视图如图所
3、示,根据图示的数据计算出该几何体的表面积()A65B90C25D858(2016福建省莆田市)如图,OP是AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定POCPOD的选项是()APCOA,PDOBBOC=ODCOPC=OPDDPC=PD9分式方程=1的解为()Ax=1Bx=0Cx=Dx=110如图: 在中,平分,平分,且交于,若,则等于( )A75B100 C120 D125112022年冬奥会,北京、延庆、张家口三个赛区共25个场馆,北京共12个,其中11个为2008年奥运会遗留场馆,唯一一个新建的场馆是国家速滑馆,可容纳12000人观赛,将12000用科学记数法
4、表示应为( )A1210B1.210C1.210D0.121012下列运算结果正确的是( )A3a2a2 = 2Ba2a3= a6C(a2)3 = a6Da2a2 = a二、填空题:(本大题共6个小题,每小题4分,共24分)13若函数y=m-2x的图象在其所在的每一象限内,函数值y随自变量x的增大而减小,则m的取值范围是_14不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为_15按照神舟号飞船环境控制与生命保障分系统的设计指标,“神舟”五号飞船返回舱的温度为214.该返回舱的最高温度为_16阅读下面材料:在数学课上,老师提出如下问
5、题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是_17如图,在中,的半径为2,点是边上的动点,过点作的一条切线(点为切点),则线段长的最小值为_18如图,小红作出了边长为1的第1个正A1B1C1,算出了正A1B1C1的面积,然后分别取A1B1C1三边的中点A2,B2,C2,作出了第2个正A2B2C2,算出了正A2B2C2的面积,用同样的方法,作出了第3个正A3B3C3,算出了正A3B3C3的面积,由此可得,第8个正A8B8C8的面积是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)6月14日是“世界献血日”,某市采取自愿报名的
6、方式组织市民义务献血献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型ABABO人数 105 (1)这次随机抽取的献血者人数为 人,m= ;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?20(6分)已知二次函数的图象如图6所示,它与轴的一个交点坐标为,与轴的交点坐标为(0,3)求出此二次函数的解析式;根据图象,写出函数值为正数时,
7、自变量的取值范围21(6分)小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的作法是这样的:如图:(1)利用刻度尺在AOB的两边OA,OB上分别取OMON;(2)利用两个三角板,分别过点M,N画OM,ON的垂线,交点为P;(3)画射线OP则射线OP为AOB的平分线请写出小林的画法的依据_22(8分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(6,n),与x轴交于点C(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b的x的取值范围;(3)若点P在x轴上,且SACP=,求点P的坐标2
8、3(8分)某科技开发公司研制出一种新型产品,每件产品的成本为2500元,销售单价定为3200元在该产品的试销期间,为了促销,鼓励商家购买该新型品,公司决定商家一次购买这种新型产品不超过10件时,每件按3200元销售:若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低5元,但销售单价均不低于2800元商家一次购买这种产品多少件时,销售单价恰好为2800元?设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所
9、获的利润反而减少这一情况为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)24(10分)如图,在ABC中,ACB=90,AC=1sinA=,点D是BC的中点,点P是AB上一动点(不与点B重合),延长PD至E,使DE=PD,连接EB、EC(1)求证;四边形PBEC是平行四边形;(2)填空:当AP的值为 时,四边形PBEC是矩形;当AP的值为 时,四边形PBEC是菱形25(10分)已知平行四边形尺规作图:作的平分线交直线于点,交延长线于点(要求:尺规作图,保留作图痕迹,不写作法);在(1)的条件下,求证:26(12分)(14分)如图,在平面直角坐
10、标系中,抛物线y=mx28mx+4m+2(m2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2x1=4,直线ADx轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q(1)求抛物线的解析式;(2)当0t8时,求APC面积的最大值;(3)当t2时,是否存在点P,使以A、P、Q为顶点的三角形与AOB相似?若存在,求出此时t的值;若不存在,请说明理由27(12分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0)点P是直线BC上方的抛物线上一动点求二次函数y=ax2+2x+c的表达式
11、;连接PO,PC,并把POC沿y轴翻折,得到四边形POPC若四边形POPC为菱形,请求出此时点P的坐标;当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】解:A,故本选项错误;B,故本选项错误;C,不能约分,故本选项正确;D,故本选项错误故选C点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键2、B【解析】根据倒数的定义求解.【详解】-2的倒数是-故选B【点
12、睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握3、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】810 000=8.11故选B【点睛】本题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4、C【解析】如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大
13、排列后,排在中间位置的两个数的平均数是这组数据的中位数. 一组数据中出现次数最多的数据叫做众数【详解】解:7出现了2次,出现的次数最多,众数是7;从小到大排列后是:1,2,3,6,7,7,9,排在中间的数是6,中位数是6故选C【点睛】本题考查了中位数和众数的求法,解答本题的关键是熟练掌握中位数和众数的定义5、B【解析】(1)利用待定系数法求出二次函数解析式为y=-x2+x+3,即可判定正确;(2)求得对称轴,即可判定此结论错误;(3)由当x=4和x=-1时对应的函数值相同,即可判定结论正确;(4)当x=3时,二次函数y=ax2+bx+c=3,即可判定正确【详解】(1)x=-1时y=-,x=0时
14、,y=3,x=1时,y=,解得abc0,故正确;(2)y=-x2+x+3,对称轴为直线x=-=,所以,当x时,y的值随x值的增大而减小,故错误;(3)对称轴为直线x=,当x=4和x=-1时对应的函数值相同,16a+4b+c0,故正确;(4)当x=3时,二次函数y=ax2+bx+c=3,x=3是方程ax2+(b-1)x+c=0的一个根,故正确;综上所述,结论正确的是(1)(3)(4)故选:B【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键6、C【解析】主视图、左视图、俯视图是分别从物体正面、左面
15、和上面看,所得到的图形【详解】根据三视图知,该几何体中小正方体的分布情况如下图所示:所以组成这个几何体的小正方体个数最多为9个,故选C【点睛】考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查.7、B【解析】根据三视图可判断该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,再利用勾股定理计算出母线长,然后求底面积与侧面积的和即可【详解】由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,所以圆锥的母线长=13,所以圆锥的表面积=52+2513=90故选B【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的
16、半径等于圆锥的母线长也考查了三视图8、D【解析】试题分析:对于A,由PCOA,PDOB得出PCO=PDO=90,根据AAS判定定理可以判定POCPOD;对于B OC=OD,根据SAS判定定理可以判定POCPOD;对于C,OPC=OPD,根据ASA判定定理可以判定POCPOD;,对于D,PC=PD,无法判定POCPOD,故选D考点:角平分线的性质;全等三角形的判定9、C【解析】首先找出分式的最简公分母,进而去分母,再解分式方程即可【详解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-,检验:当x=-时,(x+1)20,故x=-是原方程的根故选C【点睛】此题主要考查
17、了解分式方程的解法,正确掌握解题方法是解题关键10、B【解析】根据角平分线的定义推出ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值【详解】解:CE平分ACB,CF平分ACD,ACE=ACB,ACF=ACD,即ECF=(ACB+ACD)=90,EFC为直角三角形,又EFBC,CE平分ACB,CF平分ACD,ECB=MEC=ECM,DCF=CFM=MCF,CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=1故选:B【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平
18、分线),直角三角形的判定(有一个角为90的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出ECF为直角三角形11、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.【详解】数据12000用科学记数法表示为1.2104,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值.12、C【解析】选项A, 3a2a2 = 2
19、 a2;选项B, a2a3= a5;选项C, (a2)3 = a6;选项D,a2a2 = 1.正确的只有选项C,故选C.二、填空题:(本大题共6个小题,每小题4分,共24分)13、m2【解析】试题分析:有函数y=m-2x的图象在其所在的每一象限内,函数值y随自变量x的增大而减小可得m-20,解得m2,考点:反比例函数的性质.14、 【解析】分析:根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值即其发生的概率.详解:由于共有8个球,其中篮球有5个,则从袋子中摸出一个球,摸出蓝球的概率是 ,故答案是 点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能
20、性相同,其中事件 A出现m种结果,那么事件A的概率P(A)= 15、17【解析】根据返回舱的温度为214,可知最高温度为21+4;最低温度为21-4【详解】解:返回舱的最高温度为:21+4=25;返回舱的最低温度为:21-4=17;故答案为:17【点睛】本题考查正数和负数的意义4指的是比21高于4或低于416、两点确定一条直线;同圆或等圆中半径相等【解析】根据尺规作图的方法,两点之间确定一条直线的原理即可解题.【详解】解:两点之间确定一条直线,CD和AB都是圆的半径,AB=CD,依据是两点确定一条直线;同圆或等圆中半径相等.【点睛】本题考查了尺规作图:一条线段等于已知线段,属于简单题,熟悉尺规
21、作图方法是解题关键.17、【解析】连接,根据勾股定理知,可得当时,即线段最短,然后由勾股定理即可求得答案【详解】连接是的切线,;,当时,线段OP最短,PQ的长最短,在中,.故答案为:【点睛】本题考查了切线的性质、等腰直角三角形的性质以及勾股定理此题难度适中,注意掌握辅助线的作法,得到时,线段最短是关键18、【解析】根据相似三角形的性质,先求出正A2B2C2,正A3B3C3的面积,依此类推AnBnCn的面积是,从而求出第8个正A8B8C8的面积【详解】正A1B1C1的面积是,而A2B2C2与A1B1C1相似,并且相似比是1:2,则面积的比是,则正A2B2C2的面积是;因而正A3B3C3与正A2B
22、2C2的面积的比也是,面积是()2;依此类推AnBnCn与An-1Bn-1Cn-1的面积的比是,第n个三角形的面积是()n-1所以第8个正A8B8C8的面积是()7=故答案为【点睛】本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)50,20;(2)12,23;见图;(3)大约有720人是A型血【解析】【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B型的人数除以抽取的总人数即可求得m的值;(2)先计算出O型的人数,再计算出A型人数,从
23、而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数【详解】(1)这次随机抽取的献血者人数为510%=50(人),所以m=100=20,故答案为50,20;(2)O型献血的人数为46%50=23(人),A型献血的人数为5010523=12(人),补全表格中的数据如下:血型ABABO人数1210523故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率=,3000=720,估计这3000人中大约有720人是A型血【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,
24、从中找到必要的信息是解题的关键;随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数 20、(1);(2).【解析】(1)将(-1,0)和(0,3)两点代入二次函数y=-x2+bx+c,求得b和c;从而得出抛物线的解析式;(2)令y=0,解得x1,x2,得出此二次函数的图象与x轴的另一个交点的坐标,进而求出当函数值y0时,自变量x的取值范围【详解】解:(1)由二次函数的图象经过和两点,得,解这个方程组,得,抛物线的解析式为,(2)令,得解这个方程,得,此二次函数的图象与轴的另一个交点的坐标为当时,【点睛】本题考查的知识点是二次函数的三种形式及待定系数法求二次函数解析式及抛物
25、线与坐标轴的交点,解题的关键是熟练的掌握二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点.21、斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线【解析】利用“HL”判断RtOPMRtOPN,从而得到POM=PON【详解】有画法得OMON,OMPONP90,则可判定RtOPMRtOPN,所以POMPON,即射线OP为AOB的平分线故答案为斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线【点睛】本题考查了作图基本作图,解题关键在于熟练掌握基本作图作一条线段等于已知线段.22、(1);(1)-6x0或1x
26、;(3)(-1,0)或(-6,0)【解析】(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;(1)根据函数图像判断即可;(3)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合SACP=SBOC,即可得出|x+4|=1,解之即可得出结论【详解】(1)点A(m,3),B(-6,n)在双曲线y=上,m=1,n=-1,A(1,3),B(-6,-1)将(1,3),B(-6,-1)带入y=kx+b, 得:,解得,直线的解析式为y=x+1(1)由函数图像可知,当kx+b时,-6x0或1x;(3)当y=x+1
27、=0时,x=-4,点C(-4,0)设点P的坐标为(x,0),如图,SACP=SBOC,A(1,3),B(-6,-1),3|x-(-4)|=|0-(-4)|-1|,即|x+4|=1,解得:x1=-6,x1=-1点P的坐标为(-6,0)或(-1,0)【点睛】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB的解析式;(1)根据函数图像判断不等式取值范围;(3)根据三角形的面积公式以及SACP=SBOC,得出|x+4|=123、(1)商家一次购买这种产品1件时,销售单价
28、恰好为2800元;(2)当0 x10时,y700 x,当10 x1时,y5x2+750 x,当x1时,y300 x;(3)公司应将最低销售单价调整为2875元【解析】(1)设件数为x,则销售单价为3200-5(x-10)元,根据销售单价恰好为2800元,列方程求解;(2)由利润y=(销售单价-成本单价)件数,及销售单价均不低于2800元,按0 x10,10 x50两种情况列出函数关系式;(3)由(2)的函数关系式,利用二次函数的性质求利润的最大值,并求出最大值时x的值,确定销售单价【详解】(1)设商家一次购买这种产品x件时,销售单价恰好为2800元由题意得:32005(x10)2800,解得:
29、x1答:商家一次购买这种产品1件时,销售单价恰好为2800元;(2)设商家一次购买这种产品x件,开发公司所获的利润为y元,由题意得:当0 x10时,y(32002500)x700 x,当10 x1时,y32005(x10)2500 x5x2+750 x,当x1时,y(28002500)x300 x;(3)因为要满足一次购买数量越多,所获利润越大,所以y随x增大而增大,函数y700 x,y300 x均是y随x增大而增大,而y5x2+750 x5(x75)2+28125,在10 x75时,y随x增大而增大由上述分析得x的取值范围为:10 x75时,即一次购买75件时,恰好是最低价,最低价为3200
30、5(7510)2875元,答:公司应将最低销售单价调整为2875元【点睛】本题考查了一次、二次函数的性质在实际生活中的应用最大销售利润的问题常利二次函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案24、证明见解析;(2)9;12.5.【解析】(1)根据对角线互相平分的四边形为平行四边形证明即可;(2)若四边形PBEC是矩形,则APC=90,求得AP即可;若四边形PBEC是菱形,则CP=PB,求得AP即可【详解】点D是BC的中点,BD=CDDE=PD,四边形PBEC是平行四边形;(2)当APC=90时,四边形PBEC是矩形AC=1sinA=,PC=12,由
31、勾股定理得:AP=9,当AP的值为9时,四边形PBEC是矩形;在ABC中,ACB=90,AC=1sinA=,所以设BC=4x,AB=5x,则(4x)2+12=(5x)2,解得:x=5,AB=5x=2当PC=PB时,四边形PBEC是菱形,此时点P为AB的中点,所以AP=12.5,当AP的值为12.5时,四边形PBEC是菱形【点睛】本题考查了菱形的判定、平行四边形的判定和性质、矩形的判定,解题的关键是掌握特殊图形的判定以及重要的性质25、(1)见解析;(2)见解析.【解析】试题分析:(1)作BAD的平分线交直线BC于点E,交DC延长线于点F即可;(2)先根据平行四边形的性质得出ABDC,ADBC,
32、故1=2,3=1再由AF平分BAD得出1=3,故可得出2=1,据此可得出结论试题解析:(1)如图所示,AF即为所求;(2)四边形ABCD是平行四边形,ABDC,ADBC,1=2,3=1AF平分BAD,1=3,2=1,CE=CF考点:作图基本作图;平行四边形的性质.26、(1)y=14x2-2x+3;(2)12;(3)t=或t=或t=1【解析】试题分析:(1)首先利用根与系数的关系得出:x1+x2=8,结合条件x2-x1=4求出x1,x2的值,然后把点B,C的坐标代入解析式计算即可;(2)(2)分0t6时和6t8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2t6时和t6时两种情况进行讨论,再根据三角形相似的条件,即可得解试题解析:解:(1)由题意知x1、x2是方程mx28mx+4m+2=0的两根,x1+x2=8,由解得:B(2,0)、C(6,0)则4m16m+4m+2=0,解得:m=,该抛物线解析式为:y=;(2)可求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社区环保项目的实施计划
- 中班幼儿数学教案《小小设计师》
- 幼儿园大班工作总结五篇
- 2024年度金融机构不可撤销连带责任担保书3篇
- 公关行业美工公关活动海报公关策略图
- 招生方案范文7篇
- 中医科护士的工作总结
- 预防科护士推广疾病预防
- 2024全新车展活动车辆展示区清洁维护合同3篇
- 2024医院单位护士岗位聘用合同书3篇
- 《护理学研究》自考历年真题题库汇总(含答案)
- 缠论公式(最完美自动画笔公式)主图
- 凯迪拉克赛威说明书
- 报价单报价单
- 公司车辆维修保养服务方案
- 高中日语学习宣讲+课件
- 马克思主义基本原理概论课后习题及答案2023年
- 国家开放大学《高等数学基础》形考任务1-4参考答案
- 系统架构图课件ppt
- 矿物绝缘电缆电缆比较
- GB/T 18601-2001天然花岗石建筑板材
评论
0/150
提交评论