化学泥浆性能说明_第1页
化学泥浆性能说明_第2页
化学泥浆性能说明_第3页
化学泥浆性能说明_第4页
化学泥浆性能说明_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、目前国内得到认可的各种钻井液类型为:分散钻井液钙处理钻井液3盐水钻井液饱和盐水钻井液聚合物钻井液钾基聚合物钻井液7油基钻井液8合成基钻井液气体型钻井流体保护油气层的钻井液三主要参数:密度流变性滤失造壁性润滑性钻井液的pH和碱度钻井液的含沙量钻井液的固相含量钻井液中膨润土含量钻井液中滤液分析前几项参数分常规和高温高压两种不同条件同时前几项的重要性也最大,一般测得就是前几项钻井液用正电胶干粉MMH一、概述本产品为自由流动的白色或微黄色粉末,具有较强的悬浮携沙能力,流变性能好,电测成功率高,机械钻速快,泥浆配制简单,易于维护。二、性能项目指标外观自由流动的白色或微黄色的粉末水分,%95筛余物(孔径0

2、.25mm),%95酸溶率,%95动切力提高率,%600电位,mv35三、应用本产品作为增粘剂使用时,主要提高体系的结构粘度,改善泥浆的剪切稀释性和悬浮携沙清洗井眼的效率,其最佳用量范围为0.5-0.8%。当作为抑制剂使用时,其最佳用量为1%左右。四、包装、储存本产品采用三合一袋包装,内衬聚乙烯薄膜袋,每袋净重25千克;储存于阴凉、干燥、通风处。五、安全避免与眼睛、皮肤和衣服接触,否则用大量的清水清洗;有关处理方法及危险数据请参阅安全数据单(MSDS)。羧甲基纤维素钠CMC产品型号代替度(DS)2纯度三PH值粒度(60目)三干燥减量%W粘度粘度计600Y/min读数滤失量(ml)蒸馏水4%盐水

3、饱和盐水HV10.65857-98010W90一一W10HV20.80807-98010W80W90W100W10HV30.80907-98010W30W30W30W10石油级CMC作为钻探泥浆体系中的水溶性胶体,组成钻井液。具有较高的失水控制能力。HV2是高效的降滤失剂,在较低的加量下,就可以把失水控制在较好的水位,而不影响泥浆的其它性能。且形成的泥饼质量好、坚而韧。且耐温性能好,抗盐性能优越,在一定盐浓度下,仍能有较好的降失水能力及保持一定的流变性,在其盐水溶液与水溶液中粘度几乎不改变、。粘剂适用于海上钻井和深进的要求。能很好地控制泥浆的流变性,具有良好的非牛顿流体性。CMC作固井液、可阻

4、止流体进入岩层及裂缝,用作压裂液可控制流体进入油井中的换失。防塌降滤失剂本产品为油田化学品,是钻井液用泥浆助剂,作用为钻井井壁降滤失水小,防止井壁坍塌。该产品主要由天然矿化物和多种精细化工原料组成,无毒、无害,为安全绿色环保型产品,是石油钻井广泛使用的助剂。一、产品简介1、抗温能力强,使用温度可达180C,具有很好的降失水性能和广泛的抗污染能力。2、粘度效应低,具有优异的流变性和较高的钻进速度。3、具有较好的护壁和防塌功能,最大限度地减少了钻井过程中的异常情况发生。4、与SF260钻井液用硅氟高温降粘剂配合使用,钻井泥浆性能更加优异,能大量节省其它钻井材料,综合经济效益更好。二、性能指标表1理

5、化性能项目指标外观黑色流动性固体粉末PH值12筛余量%5烘失量%152.1处理剂封堵剂评价及影响因素以1#配方为基浆,加入SMP或SPNH降滤失剂,能继续降低钻井液HTHP滤失量与HTHP渗透失水,但仍然不能降低砂床滤失量,见表1。继续加入1%TEX和1%NPA225(树脂类封堵剂)(3#配方),钻井液砂床滤失量开始降低,钻井液封堵性能开始改善。再加入1.5%FMP和1%JYW21(4#配方),钻井液封堵效果得到显著提高,砂床滤失量降至1.3mL。表1愛理剤对钻井液封堵效果的影响配方FLapiFLEITK卩FLEnnFLmLmLmLinL1=&11.06.0全流失耳-2%SMP8.44.4.E

6、全流失L斗2HSPNH&4,4L4全流失6.()615.04斗4.89.24.31.3注:实验条件为在110兀热滚16h;FLHTHPSFLFTLP,Smin、耳眇罠均在测定2.2封堵剂加量如表2所示,钻井液高温高压砂床滤失量随着封堵剂NPA225和TEX加量的增加而下降。表2it堵剂加冒对钳井液封堵效果的影响p配方1gcnrFLgmLFLEiTEi卩niLFLtTHPmLFL越蔗mL犷L034.S7-41.8/4.40,7/3.0管1.033.60.3/0.4注:实验条件为在93仁热滚16h:FLFtTKP、FLKTH卩*刊泻均在93匸下测定;FLhthp.FL|j,7I.分别为5min和3

7、0min测得z2.3膨润土含量膨润土含量在不同温度下对钻井液封堵效果的影响见表3和表4。从表3和表4可以看出,无论在90C还是110C下,钻井液膨润土含量增加,高温高压砂床滤失量增加;温度从90C增至110C,膨润土含量的增高对砂床滤失量的影响更大,因此必须保持合理的膨润土含量,不能过高。2.4钻井液密度以5#为基浆,研究钻井液密度对钻井液封堵效果的影响,结果见表5和表6。*5箔井液密度对钻井液封堵效果的影0配方/cnrFLxpimLFLHTK卩mbFLE-tTEtnniLFL碍rnLU云51.033.69.21.2J3.30.10.15-石灰石粉1.163.28.01.3/2.50.63.4

8、5=+重晶石1.323.29.2.0/2.1+重品石1.423.29.60.6/1.65=重晶石L503.27.20.2/0.4注:实验条件为在姑匸热滚1&h;FLHTHPFLHTKP、戌如均在刁CF测定仆凡如的值分别为5min和30min测得:钻井液中钠膨润土加量均为7%.表自钻井液密度对钻井液封堵效果的影响(】ion配方Pg/cnfFLgjhLFLRTHPniLFL林mL2专1,033-61L214.5=5.054.48.55.85=十重晶石1.463.29.02.8注:实验条件为在=0热滚16hiFLt丁応卩皿沁均在111)CF测定常井液中钠膨润土加量均为8%=由表5和表6可以看出,随着

9、钻井液密度的增加,高温高压滤失量变化不明显,高温高压砂床滤失量下降,由此可以看出,重晶石的加入有利于提高钻井液的封堵性能。2.5乳状液以5#为基浆,研究乳状液对钻井液封堵效果的影响,结果见表7。表7乳状液对钳井液笛堵效果的影阴配方,宙cnrFLAptmLFLKTttPniL!T1LLS03-27.2萨-4-5-0.2%BSNL502.47.60/()注:钻井液中钠膨润土加量均为7%;真验条件为在90-曲滚16h;FLm甩砂底均在90CT测定;甩换的值分别为5min和31)miri测得。由表7可以看出,被乳化的油滴对钻井液高温高压滤失量的影响不大,但有利于对地层的封堵,降低钻井液的砂床滤失量,混

10、入5%的白油后,钻井液在90C下的砂床滤失量降为0。2.6温度温度对封堵剂封堵效果的影响见表8。从表8可以看出,温度对钻井液封堵效果影响较大,随着温度升高,钻井液的砂床滤失量和砂床渗透失水都变大,表明钻井液的封堵能力变弱。当温度升高时,必须调整钻井液配方,以求获得最佳封堵效果。表8温度对封堵彌封堵效果的影响fmL)封堵剂-FLETEPFLHTUPFL站FL炽901120匸90匸:120X:WX:120T?WEC120CC2%TLX11.05Z23.008.105.22%MP11-013,.23-52.7063.54S1%!YW-11.6Z9002YW12.509.104.51%TEX-1%PM

11、F10.S1(182.&2.804.403.51YU-11%FMPIt).,42.06.52.8注;采用聚.胺氯化钾聚令醉钻井液进厅实验;石英矽粒径为0.1(.28mn=*3膨润土含量对钻井液耐堵效果的影响(90rO钠膨润PFL阳:/Z-FilhPFLFITHPFL昨氏土/%劇cni3niLmLmLniL6.51.173.65.2W2.30.6/3.07-0L63-28.01.32.5Q.6/3.4注:龛浆为12=-CaCOi;实验縈件为在站=事滚6h:FLhthp*FLhtf;p*FL那茨均在90t卜釧定:FLh:ti;p*FL磁戾的值分别为5min和JOmin测得*表4膨润土含量对粘井液封

12、堵效果的彫响(IIDCQ钠膨润PFLiFLKTttPFLHTUPFL椰/%爭cm3niLmL3T1LniL6.5.044.89.24.31.38J)1.054.48.55.8注;基浆为5*;实验条件为在110C热俵16h;/T.HTtfP-rFLFETFE卩、刃拆均在110CF测定。2.7石英砂目数对封堵剂效果的影响用密度为1.40g/cm3的聚胺氯化钾聚合醇钻井液作基浆,为近似模拟井下条件,采用不同粒径的石英砂对封堵剂的效果进彳丁评价,结果见表8和表9。由表8和表9可以看出,对粒径为0.180.28mm的石英砂,在120C、3.5MPa下采用1%FMP+1%TEX就可以实现有效地封堵;但是在

13、相同温度与压差下,对于粒径为0.450.90mm的石英砂,砂床滤失量仍保持较低,但用清水做砂床渗透失水时,全部漏失,封堵带被冲走。表中的封堵剂配方如下。#2%TEX+2%FMP#2%TEX+2%FLC22000#2%FLC2000+2%JYW21表9封堵剂评价实脸(石英砂粒径为0-45-0.90mm)封堵剂FLKTEiPmLFLHTK卩triLniLinL9.2N9IS.2全失2%TEX+37.S2.925,.6全失2%TEX+4%FMP6.02”220.S氐32%TEX-69.02.49.5&6%TEX+4%FMP(土3引y6.o4.015.4全失3%TEX+3%FMPK)-43,.017J

14、)全失4%TEX+2%FMP9.23,.819.55,52%TEX-h2HJYWH10.23.458.0全失6+1%W111.02.424.06.06W十1%SLN11.0M016.05.6犷十%sln12.04.545.01S.06十2%SL9.63.516.05.0rL63.720-44,8007.539”05.5严14.2M313.04.7注实验温度为150兀,Jt他实验温度均为120匸;SLN为粒径小于0,154mm的随钻堵漏剂雹2.8压差对封堵效果的影响压差对钻井液封堵效果的影响见表10。由表10可以看出,采用粒径为0.450.90mm的石英砂砂床,在150C时进行实验,当压差从3.

15、5MPa增到6.0MPa时,钻井液封堵效果变差,砂床滤失量与砂床渗透失水以较大幅度增加,必须调整封堵剂配方,增加封堵剂的加量,才能取得较好的封堵效果。表压差跡钻井液理堵效果的影响(150配方FLapiFLHTHPFL*mLmLmLniL19.07.539.05.5厂20.07A)75J)16.016.04Alt)L0存亠2临YW-十2%QS216.85.243.04.1萨H-4%TEX15.24.628.53,98-6%TEX12.03.720.54.2犷+%SLN12.04.545J)1/D胪+2%SLN10.83.663.0全失2%TEX+2%JYUT十2%SLN21.031.573J)1

16、0.54%TEX+2%FMP-2%SLN9.23.977.24.5注厂压差为3MPa;Jt他压差均为6.0MPa;采用聚肢氯化钾聚合醇钻井液进行实验:采用粒径为0-4D90mm石英砂砂床e3认识与结论1建议采用42型或71型高温高压滤失量测定仪,测定钻井液高温高压滤失量、渗透失水、砂床滤失量和砂床失水来评价钻井液的封堵效果。采用高温高压渗透失水、高温高压砂床滤失量和高温高压砂床失水3者随时间增长速率趋于零来表示钻井液封堵效果,或采用在实验温度压差下30min高温高压砂床滤失量和高温高压砂床失水为零来表示;同时还应观察砂床外泥饼质量。2钻井液封堵剂种类、加量、膨润土含量、加重剂含量、钻井液中固相

17、粒级分布、含油量、温度、压差、地层裂隙大小等因素影响钻井液封堵效果。3采用降滤失剂、沥青类产品、成膜封堵剂等复配能有效实现对地层裂隙的封堵,但随温度与压差增加,必须调整封堵剂的品种与加量。高分子悬浮剂加剂高提粘化学添纯碱钻井液知识,白油,腐植酸,重晶石,等都是一些处理剂,些都是泥浆性能调节的,重金石是用来增加比重的,每个处理剂都有不同的作用,如果你想写毕业设计,你自己必须看一些有关的书籍,推荐几个书籍,钻井液与岩土工程浆液,岩土钻掘工程等,我以前写过的一个课程报告,发给你吧,1、胶体率成孔液的胶体率是配液材料水化分散程度及悬浮稳定性的简易且有效的衡量指标。胶体率的测定:将100毫升泥浆装入量筒

18、中,将瓶塞塞紧,静止24小时后,观察量筒上部澄清液的体积(毫升数)。胶体率以百分数表示:2、比重成孔液的比重是指成孔液的重量与同体积水的重量之比。3、固相含量成孔液的固相含量指成孔液中固体颗粒占的重量或体积百分数。成孔液中的固相包括有用固相和无用固相,前者如造浆粘土、重晶石等,后者为钻屑。成孔液中的固相,按固相比重来划分,可分为重固相(重晶石比重为4.5,赤铁矿为6.0,方铅矿为6.9等)和轻固相(粘土比重一般为2.32.6,岩屑比重一般在2.22.8之间)。固相含量测定方法“蒸馏分离原理”:取一定量(20ml)成孔液,置于蒸馏管内;用电加热高温将其蒸干;水蒸气则进入冷凝器,用量筒收集冷凝的液

19、相;然后称出干涸在蒸馏器中的固相的重量;读出量筒中液相的体积;计算固相含量;其单位为重量或体积百分比。4、含砂量钻井液含砂量是指钻井液中不能通过200目筛网,即粒径大于74pm的砂粒占钻井液总体积的百分数。在现场应用中,该数值越小越好,一般要求控制在0.5%以下。这是由于含砂量过大会对钻井造成以下危害:使钻井液密度增大,对提高钻速不利。使形成的泥饼松软,导致滤失量增大,不利于井壁稳定,并影响固井质量。泥饼中粗砂粒含量过高会使泥饼的磨擦系数增大,容易造成压差卡钻。增加对钻头和钻具的磨损,缩短其使用寿命。降低钻井液含砂的最有效的方法,是充分利用振动筛、除砂器、除泥器等设备,对钻井液的固相含砂量进行

20、有效的控制。钻井液含砂量通常是用一种专门设计的含砂量测定仪进行测定的。该仪器由一个带刻度的类似于离心试管的玻璃容器和一个带漏斗的筛网筒组成,亿用筛网为200目。测量时将一定体积的钻井液注入玻璃容器中,然后注入清水至刻度线。用力振荡后将容器中的流体倒入筛网筒过筛。筛完后将漏斗套有筛网筒上反转,漏斗嘴插入玻璃容器。将不能通过筛网的砂粒用清水冲入玻璃容器中。待砂粒全部沉淀后读出体积刻度。最后由下式求出钻井液含砂量NN=(V砂粒/V钻井液)x100%5、流变性成孔液的流变性是指钻井液的流动和变形性质,它以成孔液的粘稠性为主要研究对象。反映液体粘稠性的指标根据不同的液体流型有不同的表述方法,其基础建立在

21、流变本构关系上。成孔液的粘稠性对非开挖钻扩孔的影响至关重要。流变性能测试仪器:漏斗粘度计、旋转粘度计六速旋转粘度计注意事项:外筒装卸,一手握住外转筒,另一手握住外筒顺时针转动,使外筒的卡口对准外转筒内的销子后取下外筒。装上外筒时,应使外筒的槽口对准外转筒内的销子后,在逆时针旋转外筒即可,切忌碰撞内筒。内筒装卸,一手紧握内筒轴,一手内旋内筒装卸,切勿弄弯内筒轴。长途搬运时,一定要卸下内筒,装好外筒,以防止内筒轴被撞弯。扭力弹簧刚度的调整不准随意进行。6、失水造壁性在孔内液体压力与地层孔隙流体压力差的作用下,成孔液中的自由水通过孔壁孔隙或裂隙向地层中渗透,称为成孔液的失水。失水的同时,成孔液中的固

22、相颗粒附着在井壁上形成泥皮(泥饼),称为造壁。失水性对钻孔的影响:成孔液的失水对钻孔的有利影响是:初失水可以湿润岩土,使其强度降低,有利于钻头对其破碎,提高钻进速度;在泥页岩、黄土、粘土地层中,失水过大会引起孔壁吸水膨胀、缩径、剥落、坍塌;对于破碎带、裂隙发育的地层,渗入的自由水洗涤了破碎物接触面之间的粘结,减小了摩擦阻力,破碎物易滑入孔眼内,造成孔壁坍塌、卡钻等事故;在溶解性地层中的失水越多,孔壁地层被溶解的程度就越高;厚泥皮会加大对钻具的吸附,使钻杆回转阻力增加;厚泥皮使环空过流面积减小,循环阻力和压力激动增大。7、抑制性成孔液的抑制性是指成孔液抑制孔壁岩土水化、膨胀、分散的性能。评价方法

23、:浸泡试验法;九膨胀量测试仪;九滚子炉滚动回收法;九毛细管吸收时间法;九页岩稳定性指数实验法等。九8、润滑性成孔液的润滑性与钻具磨损、循环流动阻力、设备功率消耗等有密切关系。提高成孔液的润滑性一一加入油、高聚物、润滑剂、石墨粉;成孔液润滑性用润滑系数测定仪测定。9、pH值通常用钻井液滤液的pH值表示钻井液的酸碱性。由于酸碱性的强弱直接与钻井液中粘土颗粒的分散程度有关,因此会在很大程度上影响钻井液的粘度、切力和其它性能参数。当pH值大于9时,表观粘度随pH值升高而剧增。其原因是当pH值升高时,会有更多0H-被吸附在粘土晶层的表面,进一步增强表面所带的负电性,从而在剪切作用下使粘土更容易水化分散。

24、在实际应用中,大多数钻井液的pH值要求控制在811之间,即维持一个较弱的碱性环境。这主要是由于以下几方面的原因:(1)可减轻对对钻具的腐蚀;(2)可预防氢脆而引起的钻具和套管的损坏;(3)可抑制钻井液中钙、镁盐的溶解;(4)有相当锪处理剂需要碱性介质中才能充分发挥其效能,如丹宁类、褐煤类和木质素磺酸盐类处理剂等。对不同类型的钻井液,所要求的pH值范围也有所不同,例如,一般要求分散钻井液的pH值在10以上,含石灰的钙处理钻井液的pH值多控制在1112,含石膏的钙处理钻井液的pH值多控制在9.510.5,而在许多情况下聚合物钻井液的pH值只要求控制在7.58.5。第四章常用成孔液处理剂第一节成孔液

25、的主要类型随着钻井工艺技术的不断发展,钻井液的种类越来越多。目前国内外对钻井液有各种不同的分类方法。其中较简单的分类方法有以下几种:按其密度大小可分为非加重钻井液和加重钻井液。按与粘土水化作用的强弱可分为非抑制性钻井液和抑制性钻井液。按其固相含量的不同,将固相含量较低的叫做低固相钻井液,基本不含固相的叫做无固相钻井液。然而,一般所指的分类方法是按钻井液中流体介质和体系的组成特点来进行分类的。根据流体介质的不同,总体上分为永基钻井液、油基钻井液和气体型钻井液体等三种类型,近期又出现了一类合成基钻井液,。更具体一些,中分为如图1-1所示的7种类型。由于水基钻井液在实际应用中一直占据着主导地位,根据

26、体系在组成上的不同又将其分为若干种类型。下面是在参考国外钻井液分类标准的基础上,在国内得到认可的各种钻井液类型。成孔液的主要类型见表4-1-1表4-1-1类型名称材料组成清水清水泥浆膨润土、水、处理剂化合物溶液化合物、水乳状液水、油、乳化剂泡沫浆液空气、发泡剂、稳泡剂盐水浆液NaCI、膨润土、水、处理剂水泥浆水泥、水、添加剂第二节常用无机处理剂1纯碱学名碳酸钠,又称苏打粉,分子式为Na2CO3。白色粉末,密度为2.5g/cm3,易溶于水。易吸潮结块,注意防潮,水溶液呈碱性(pH值为11.5),在水中容易电离和水解。其中电离和一级水解较强,所以纯碱水溶液中主要存在Na+、C032、HC03和0H

27、离子,其反应式为:Na2CO3=2Na+CO32CO32+H2O=HCO3+0H纯碱能通过离子交换和沉淀作用使钙粘土变为钠粘土,即Ca粘土+Na2CO3Na粘土+CaCO3作用:改善粘土的水化分散性能,因此加入适量纯碱可使新浆的滤失量下降,粘度、切力增大。过量的纯碱会导致粘土颗粒发生聚结,使钻井液性能受到破坏。在钻水泥塞或钻井液受到钙侵时,加入适量纯碱使Ca2+沉淀成CaCO3,从而使钻井液性能变好,即含羧钠基官能团(一COONa)的有机处理剂在遇到钙侵(或Ca2+浓度过高)而降低其溶解性时,一般可采用加人适量纯碱的办法恢复其效能。2烧碱烧碱即氢氧化钠,分子式为NaOH。特性:外观乳白色晶体,

28、密度2.02.2g/cm3,易溶于水,溶解时放出大量的热。水溶液呈强碱性。烧碱容易吸收空气中的水分和二氧化碳,并与二氧化碳作用生成碳酸钠,存放时应注意防潮加盖。作用:主要用于调节钻井液的pH值;与丹宁、褐煤等酸性处理剂一起配合使用,使之分别转化为丹宁酸钠、腐植酸钠等有效成分;还可用于控制钙处理钻井液中Ca2+的浓度等。3石灰生石灰即氧化钙,分子式为CaO。吸水后变成熟石灰,即氢氧化钙Ca(OH)2。特性:在水中的溶解度较低,常温下为0.16%,其水溶液呈碱性。并且随温度升高溶解度降低。作用:a.在钙处理钻井液中,石灰用于提供Ca2+,以控制粘土的水化分散能力,使之保持在适度絮凝的状态;b.在油

29、包水乳化钻井液中,CaO用于使烷基苯磺酸钠等乳化剂转化为烷基苯磺酸钙,并调节pH值。注意事项:在高温条件下石灰钻井液可能发生固化反应,使性能不能满足要求,因此在高温深井中应慎用。此外,石灰还可配成石灰乳堵漏剂封堵漏层。4、石膏石膏的化学名称为硫酸钙,分子式为CaSO4。有熟石膏(CaS042H20)和无水石膏(CaS04)两种。特性:石膏是白色粉末,密度为2.312.32g/cm3。常温下溶解度较低(约为0.2%),但稍大于石灰。40C以前,溶解度随温度升高而增大;40C以后,溶解度随温度升高而降低。吸湿后结成硬块,存放时应注意防潮。作用:在钙处理钻井液中,石膏与石灰的作用大致相同,都用于提供

30、适量的Ca2+。其差别在于石膏提供的钙离子浓度比石灰高一些,此外用石膏处理可避免钻井液的pH值过高。5.氯化钙特性:无水氯化钙的吸水性极强,通常含有六个结晶水。其外观为无色斜方晶体,密度为1.68g/cm3,易潮解,且易溶于水(常温下约为75%)。溶解度极大。作用:其溶解度随温度升高而增大。在钻井液中,CaCl2主要用于配制防塌性能较好的高钙钻井液。用CaCl2处理钻井液时常常引起pH值降低。第三节常用有机处理剂1腐植酸类腐植酸(HunficAcid)主要来源于褐煤。褐煤是一种未成熟的煤,燃烧值比较低,有效成分是腐植酸,好的褐煤腐植酸含量可达7080%。腐植酸结构非常复杂的、相对分子质量不均一

31、。主要功能团:酚羟基、羧酸基、醇羟基、醌基、甲氧基和羰基等,由于分子量较大,一般难溶于水,但易溶于碱溶液,生成腐植酸钠是作为钻井液降滤失剂的有效成分。水化作用较强的羧钠基等水化基团,使腐植酸钠不但具有很好的降滤失作用,还兼有一定降粘作用。2纤维素类纤维素是由许多环式葡萄糖单元构成的长链状高分子化合物,以纤维素为原料可以制得一系列钻井液降滤失剂,其中使用最多的是钠羧甲基纤维素简称CMC和羟乙基纤维素,简称HEC。钠羧甲基纤维素的物理特性纯净的钠羧甲基纤维素为白色纤维状粉末,具有吸湿性,溶于水后形成胶状液。是一种广泛使用的性能良好的降滤失剂。结构特点和性质在由纤维素制成钠羧甲基纤维素的过程中,除了

32、聚合度明显降低之外,另一变化是将-CH2C00Na(钠羧甲基)通过醚键连接到纤维素的葡萄糖单元上去。通常将纤维素分子每一葡萄糖单元上的3个羟基中,羟基上的氢被取代而生成醚的个数称做取代度或醚化度。研究表明,决定钠羧甲基纤维素性质和用途的因素主要有两个:一是聚合度n,二是取代度do(3)钠羧甲基纤维素的降滤失机理CMC在钻井液中电离生成长链的多价阴离子。其分子链上的羟基和醚氧基为吸附基团,而羧钠基为水化基团。羟基和醚氧基通过与粘土颗粒表面上的氧形成氢键或与粘土颗粒断键边缘上的AI3+之间形成配位键使CMC能吸附在粘土上;而多个羧钠基通过水化使粘土颗粒表面水化膜变厚,粘土颗粒表面电动电位的绝对值升

33、高,负电量增加,从而阻止粘土颗粒之间因碰撞而聚结成大颗粒(护胶作用),并且多个粘土细颗粒会同时吸附在CMC的一条分子链上,形成布满整个体系的混合网状结构,从而提高了粘土颗粒的聚结稳定性,有利于保持钻井液中细颗粒的含量,形成致密的滤饼,降低滤失量。3丙烯酸类聚合物丙烯酸类聚合物是低固相聚合物钻井液的主要处理剂类型之一。制备这类聚合物的主要原料有丙烯腈、丙烯酰胺、丙烯酸和丙烯磺酸等。根据所引入官能团、相对分子质量、水解度和所生成盐类的不同,可合成一系列钻井液处理剂。第四节常用有机处理剂的作用原理降失水:通过在井壁上形成低渗透率、柔韧、薄而致密的滤冰,尽可能降低钻井液的滤失量;稀释:拆散粘土颗粒间的

34、端一面结构,破坏泥浆体系内部的网状结构,放出自由水,粘土保持分散状态,从而降低粘度和切力;絮凝:大分子上的吸附基吸附或捕捉岩屑颗粒,使岩屑絮集,再通过固控系统除去;4增粘:有强亲水基团的长链环式高分子化合物,溶于水,有很高的粘度,分子链间可因氢键或与交联剂形成网状结构,从而增粘;抑制页岩水化:高分子化合物的众多吸附基与泥页岩孔壁产生多点吸附,形成致密的薄膜,抑制水的渗透,从而抑制水化膨胀;流型调节:分子链长的线型高分子化合物,分子链的柔软性大,结合的水分子多,分子间的内摩阻力小,可提高泥浆的剪切稀释作用和提高泥浆携带岩屑的能力。第五章成孔液的设计与配制第一节成孔液的基本设计流程根据工程实际,依

35、次:设计成孔液的主要技术指标及重要参性能参数u选择成孔液类型u选择造浆基本材料和处理剂u进行成孔液处理剂配方设计U成孔液材料用量计算U确定成孔液的制备方法U拟订成孔液循环、净化、管理计划U其它需要注意的事项U第二节常用成孔液的设计原则1、考虑悬排钻碴、护壁堵漏的要求确定成孔液的流变性。表观粘度一般在10mPas100mPas,切力在020Pa。2、按平衡地层压力的要求计算成孔液的比重。一般成孔液的比重在0.601.30之间。3、成孔液的其他设计指标的参考范围为:失水量应不大于15ml/30min,含砂量不大于8%,胶体率不小于90%,PH值视不同情况在611之间调整,润滑系数应控制在0.020

36、.50。第三节按地层分类的成孔液类型按适用条件,可以把成孔液分为:用于砂层、卵砾石层、破碎带等机械性分散性地层的泥浆一松散层泥浆;u用于土层、泥岩、页岩等水敏性地层的泥浆一水敏抑制性泥浆;u用于岩盐、钾盐、天然碱等水溶性地层的泥浆一水溶抑制性泥浆;u用于较为稳定、漏失较小的硬岩钻进的泥浆一硬岩钻进泥浆;u用于异常低压或异常高压地层的低比重泥浆或加重泥浆;u第四节成孔液的配制较全面的泥浆设计的基本流程是:设计泥浆的重度、流变性、降失水性等主要技术指标;确定泥浆的胶体率、允许含砂量、固相含量、pH值、润滑性、渗透率、泥皮质量等重要参数;选择造浆粘土和处理剂;进行泥浆处理剂配方设计;泥浆材料用量计算;确定泥浆的制备方法;拟订泥浆循环、净化、管理措施。.按平衡地层压力的要求计算泥浆的重度V。即vh=PC或vh二P0。PC、P0分别为井深H处的地层侧压力或地层空隙流体压力,它们的确定方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论