版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第27讲 数列与概率的交汇问题 一、单选题1(2021江苏镇江江河艺术高级中学有限公司高二期中)随机数表是人们根据需要编制出来的,由0,1,2,3,4,5,6,7,8,9这10个数字组成,表中每一个数都是用随机方法产生的,随机数的产生方法主要有抽签法、抛掷骰子法和计算机生成法现有甲、乙、丙三位同学合作在一个正二十面(如图)的各面写上09这10个数字(相对的两个面上的数字相同),这样就得到一个产生09的随机数的骰子依次投掷这个骰子,并逐个记下朝上一面的数字,就能按顺序排成一个随机数表,若甲、乙、丙依次投掷一次,按顺序记下三个数,三个数恰好构成等差数列的概率为( )ABCD2(2021湖北襄阳四中
2、模拟预测)意大利数学家斐波那契的算经中记载了一个有趣的问题:已知-对兔子每个月可以生一对兔子,而一对兔子出生后在第二个月就开始生小兔子.假如没有发生死亡现象,那么兔子对数依次为:1,1,2,3,5,8,13,21,34,55,89,144,.,这就是著名的斐波那契数列,它的递推公式是,其中,若从该数列的前120项中随机地抽取一个数,则这个数是偶数的概率为( )ABCD3(2021全国高二专题练习)在流行病学中,基本传染数是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.一般由疾病的感染周期感染者与其他人的接触频率每次接触过程中传染的概率决定.假设某种传染病的基本传染
3、数,平均感染周期为7天,那么感染人数由1个初始感染者增加到1000人大约需要( )轮传染?(初始感染者传染个人为第一轮传染,这个人每人再传染个人为第二轮传染)A4B5C6D74(2021江苏海安模拟预测)如图,一颗棋子从三棱柱的一个顶点沿棱移到相邻的另一个顶点的概率均为,刚开始时,棋子在上底面点处,若移了次后,棋子落在上底面顶点的概率记为.则( )ABCD5(2021全国高三专题练习(文)满足,的数列称为斐波那契数列,又称黄金分割数列.如图,依次以斐波那契数列各项为边长作正方形,在每个正方形中取半径为该正方形边长、圆心角为90的圆弧,依次连接圆弧端点所成的曲线被称为斐波那契螺旋线(也称“黄金螺
4、旋”).下图圆心角为90的扇形OAB中的曲线是斐波那契螺旋线的一段,若在该扇形内任取一点,则该点在图中阴影部分的概率为( )ABCD6(2021河南温县第一高级中学高三月考(文)意大利数学家斐波那契在他的算盘全书中提出了一个关于兔子繁殖的问题:如果一对兔子每月能生1对小兔子(一雄一雌),而每1对小兔子在它出生后的第三个月里,又能生1对小兔子,假定在不发生死亡的情况下,从第1个月1对初生的小兔子开始,以后每个月的兔子总对数是:1,1,2,3,5,8,13,21,这就是著名的斐波那契数列,它的递推公式是,其中,.若从该数列的前2021项中随机地抽取一个数,则这个数是偶数的概率为( )ABCD7(2
5、021全国高二课时练习)已知随机变量只能取三个值x1,x2,x3,其概率依次成等差数列,则该等差数列公差的取值范围是( )ABC3,3D0,18(2021河北衡水第一中学高三月考(理)甲、乙两人拿两颗如图所示的正四面体骰子做抛掷游戏,规则如下:由一人同时掷两个骰子,观察底面点数,若两个点数之和为5,则由原掷骰子的人继续掷;若掷出的点数之和不是5,就由对方接着掷第一次由甲开始掷,设第n次由甲掷的概率为,则的值为( )ABCD二、多选题9(2021江苏海安高级中学高二期中)根据中国古代重要的数学著作孙子算经记载,我国古代诸侯的等级自低到高分为:男、子、伯、侯、公五个等级,现有每个级别的诸侯各一人,
6、君王要把50处领地全部分给5位诸侯,要求每位诸侯都分到领地且级别每高一级就多分处(为正整数),按这种分法,下列结论正确的是( )A为“男”的诸侯分到的领地不大于6处的概率是B为“子”的诸侯分到的领地不小于6处的概率是C为“伯”的诸侯分到的领地恰好为10处的概率是1D为“公”的诸侯恰好分到16处领地的概率是10(2021山东聊城高三期末)已知红箱内有个红球、个白球,白箱内有个红球、个白球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出-球,然后再放回去,依次类推,第次从与第次取出的球颜色相同的箱子内取出-球,然后:再放回去.记第次取出的
7、球是红球的概率为,则下列说法正确的是( )ABCD对任意的且,11(2021山东济南高三期末)已知红箱内有个红球、个球,白箱内有个红球、个白球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出一球,然后再放回去,依次类推,第次从与第次取出的球颜色相同的箱箱子内取出一球,然后再放回去.记第次取出的球是红球的概率为,则下列说法正确的是( )ABCD对任意的、,且,12(2021江苏海安高级中学高二期末)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n (nN*)次这样的操作,记甲口
8、袋中黑球个数为Xn,恰有2个黑球的概率为pn,恰有1个黑球的概率为qn,则下列结论正确的是( )Ap2,q2B数列2pnqn1是等比数列CXn的数学期望E(Xn)(nN*)D数列pn的通项公式为pn(nN*)三、双空题13(2021湖北宜昌市夷陵中学高二月考)甲、乙两人轮流掷一枚骰子,甲先掷规定:若甲掷到1点,则甲继续掷,否则由乙掷;若乙掷到3点,则乙继续掷,否则由甲掷两人始终按此规律进行,记第n次由甲掷的概率为,则_;_14(2021江苏省江阴高级中学高二期中)在桌面上有一个正四面体DABC任意选取和桌面接触的平面的三边的其中一条边,以此边为轴将正四面体翻转至另一个平面,称为一次操作如图,现
9、底面为ABC,且每次翻转后正四面体均在桌面上,则操作3次后,平面ABC再度与桌面接触的概率为_;操作n次后,平面ABC再度与桌面接触的概率为_.四、填空题15(2021全国高三专题练习)据孙子算经中记载,中国古代诸侯的等级从低到高分为:男、子、伯、候、公,共五级现有每个级别的诸侯各一人,共五人要把个橘子分完且每人都要分到橘子,级别每高一级就多分个(为正整数),若按这种方法分橘子,“公”恰好分得个橘子的概率是_16(2021浙江丽水高三专题练习)2019年暑假期间,河南有一新开发的景区在各大媒体循环播放广告,观众甲首次看到该景区的广告后,不来此景区的概率为,从第二次看到广告起,若前一次不来此景区
10、,则这次来此景区的概率是,若前一次来此景区,则这次来此景区的概率是.记观众甲第n次看到广告后不来此景区的概率为,若当时,恒成立,则M的最小值为_.17(2021上海交大附中高三月考)甲乙两位同学玩游戏,对于给定的实数,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把乘以2后再减去6;如果出现一个正面朝上,一个反面朝上,则把除以2后再加上6,这样就可得到一个新的实数,对实数仍按上述方法进行一次操作,又得到一个新的实数,当时,甲获胜,否则乙获胜,若甲胜的概率为,则的取值范围是_18(2021全国高二专题练习)在流行病学中,基本传染数是指在
11、没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数一般由疾病的感染周期感染者与其他人的接触频率每次接触过程中传染的概率决定假设某种传染病的基本传染数(注:对于的传染病,要隔离感染者,以控制传染源,切断传播途径),那么由1个初始感染者经过六轮传染被感染(不含初始感染者)的总人数为_(注:初始感染者传染个人为第一轮传染,这个人每人再传染个人为第二轮传染)19(2021上海交大附中模拟预测)袋中装有7个大小相同的小球,每个小球上标记一个正整数号码,号码各不相同,且成等差数列,这7个号码的和为49,现从袋中任取两个小球,则这两个小球上的号码均小于7的概率为_.20(2021山东枣庄
12、高三期末)在流行病学中,基本传染数是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定,假设某种传染病的基本传染数,那么感染人数由1个初始感染者增加到1000人大约需要_轮感染?(结果取整数,初始感染者传染个人为第一轮传染,这个人再分别传染给个人为第二轮传染)五、解答题21(2021全国高二课时练习)甲、乙、丙、丁四人做传球练习,球首先由甲传出,每个人得到球后都等可能地传给其余三个人之一,设表示经过n次传递后球回到甲手中的概率(1)求;(2)用n表示出22(2021全国高二单元测试)武汉又称江城
13、,它不仅有深厚的历史积淀与丰富的民俗文化,还有众多名胜古迹与旅游景点,其中黄鹤楼与东湖被称为武汉的两张名片.为合理配置旅游资源,现对某日已游览黄鹤楼景点的游客进行随机问卷调查,若不继续游玩东湖记1分,继续游玩东湖记2分,每位游客游玩东湖的概率均为,游客是否游玩东湖相互独立.(1)若从游客中随机抽取m人,记总分恰为m分的概率为,求数列的前10项和;(2)在对所有游客进行随机问卷调查过程中,记已调查过的游客的累计得分恰为n分的概率为,探讨与之间的关系,并求数列的通项公式.23(2021全国高三课时练习)某地的一个“黄金楼盘”售楼中心统计了2019年1月至5月来本楼盘看房的人数,得到如下数据:/月份
14、12345/百人2050100150180(1)试根据表中的数据,求出关于的线性回归方程,并预测几月份开始来该楼盘看房的人数超过30000人;附:线性回归方程中的斜率与截距的最小二乘法估计分别为,(2)该楼盘为了吸引购房者,特别推出“玩掷硬币游戏,送购房券”活动,购房者可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则购房者可获得购房券5000元;若遥控车最终停在“失败大本营”,则购房者可获得购房券2000元已知抛掷一枚均匀的硬币,出现正面朝上与反面朝上的概率是相等的,方格图上标有第0格,第1格、第2格、,第20格遥控车开始在第0格,购房者每抛掷一次硬币,遥
15、控车向前移动一次若正面朝上,遥控车向前移动一格(从到,),若反面朝上,遥控车向前移动两格(从到,),直到遥控车移到第19格(“胜利大本营”)或第20格(“失败大本营”)时,游戏结束设遥控车移到第格的概率为,试证明是等比数列,并求购房者参与一次游戏获得购房券5000元的概率24(2021全国高三月考)击鼓传花,也称传彩球,是中国民间游戏,数人或几十人围成圆圈坐下,其中一人拿花(或一小物件);另有一人背着大家或蒙眼击鼓(桌子、黑板或其他能发出声音的物体),鼓响时众人开始传花(顺序不定),至鼓停止为止此时花在谁手中(或其座位前),谁就上台表演节目,某单位组织团建活动,9人一组,共10组,玩击鼓传花,
16、(前五组)组号与组内女性人数统计结果如表:1234522334()女性人数与组号(组号变量依次为1,2,3,4,5,)具有线性相关关系,请预测从第几组开始女性人数不低于男性人数;参考公式:()在()的前提下,从10组中随机抽取3组,求若3组中女性人数不低于5人的有组,求的分布列与期望;()游戏开始后,若传给相邻的人得1分,间隔人传得2分,每击一次鼓传一次花,得1分的概率为0.2,得2分的概率为0.8记鼓声停止后得分恰为分的概率为,求25(2021辽宁阜新高二月考)某植物学家培养出一种观赏性植物,会开出红花或黄花,已知该植物第一代开红花和黄花的概率都是,从第二代开始,若上一代开红花,则这一代开红
17、花的概率是,开黄花的概率是,若上一代开黄花,则这一代开红花的概率是,开黄花的概率是,记第代开红花的概率是,第代开黄花的概率为,(1)求;(2)试求数列的通项公式;(3)第代开哪种颜色的花的概率更大.26(2021河北邢台高二月考)有一对夫妻打算购房,对本城市30个楼盘的均价进行了统计,得到如下频数分布表:均价(单位:千元)频数22111041(1)若同一组中的数据用该组区间的中点值作代表,用样本平均数作为的近似值,用样本标准差作为的估计值,现任取一个楼盘的均价,假定,求均价恰在8.12千元到9.24千元之间的概率;(2)经过一番比较,这对夫妻选定了一个自己满意的楼盘,恰巧该楼盘推出了趣味蹦台阶
18、送忧惠活动,由两个客户配合完成该活动,在一个口袋中有大小材质均相同的红球40个,黑球20个,客户甲可随机从口袋中取出一个球,取后放回,若取出的是红球,则客户乙向上蹦两个台阶,若取出的是黑球,则客户乙向上蹦一个台阶,直到客户乙蹦上第5个台阶(每平方米优惠0.3千元)或第6个台阶(每平方米优惠3千元)时(活动开始时的位置记为第0个台阶),游戏结束.设客户乙站到第个台阶的概率为,证明:当时,数列是等比数列;若不参加蹦台阶活动,则直接每平方米优惠1.4千元,为了获得更大的优惠幅度,请问该对夫妻是否应参与蹦台阶活动.参考数据:取,.若,则,.27(2021江苏省天一中学高二期末)根据各方达成的共识,军运
19、会于2019年10月18日至27日在武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项、329个小项.其中,空军五项、军事五项、海军五项、定向越野和跳伞5个项目为军事特色项目,其他项目为奥运项目.现对国在射击比赛预赛中的得分数据进行分析,得到如下的频率分布直方图:(1)估计国射击比赛预赛成绩得分的平均值(同一组中的数据用该组区间的中点值代表);(2)根据大量的射击成绩测试数据,可以认为射击成绩X近似地服从正态分布,经计算第(1)问中样本标准差的近似值为50,用样本平均数作为的近似值,用样本标准差作为的估计值,求射击成绩得分恰在350到400的概率;(参考数据:若随机变量服从正态分布
20、,则:,).(3)某汽车销售公司在军运会期间推广一款新能源汽车,现面向意向客户推出“玩游戏,送大奖”,活动,客户可根据抛掷骰子的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.已知骰子出现任意点数的概率都是,方格图上标有第0格,第1格,第2格,第50格.遥控车开始在第0格,客户每抛掷一次骰子,遥控车向前移动一次,若抛掷出正面向上的点数是1,2,3,4,5点,遥控车向前移动一格(从到),若抛掷出正面向上的点数是6点,遥控车向前移动两格(从到),直到遥控车移动到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束.设遥控车移动到第格的概率为,试证明是等
21、比数列,并求,以及根据的值解释这种游戏方案对意向客户是否有吸引力.28(2021全国高三专题练习(理)为了避免就餐聚集和减少排队时间,某校开学后,食堂从开学第一天起,每餐只推出即点即取的米饭套餐和面食套餐已知某同学每天中午会在食堂提供的两种套餐中选择,已知他第一天选择米饭套餐的概率为,而前一天选择了米饭套餐后一天继续选择米饭套餐的概率为,前一天选择面食套餐后一天继续选择面食套餐的概率为,如此往复(1)求该同学第二天中午选择米饭套餐的概率;(2)记该同学第天选择米饭套餐的概率为(i)证明:为等比数列;(ii)证明:当时,29(2021福建省福州第一中学高二期中)一只蚂蚁从正方形的顶点出发,每一次
22、行动顺时针或逆时针经过一条边到达另一顶点,其中顺时针的概率为,逆时针的概率为,设蚂蚁经过步回到点的概率为.(1)求,;(2)设经过步到达点的概率为,求的值;(3)求.30(2021广东中山纪念中学高二月考)为了备战2021年7月在东京举办的奥运会,跳水运动员甲参加国家队训练测试,已知该运动员连续跳水m次,每次测试都是独立的若运动员甲每次选择难度系数较小的动作A与难度系数较大的动作B的概率均为每次跳水测试时,若选择动作A,取得成功的概率为,取得成功记1分,否则记0分若选择动作B,取得成功的概率为,取得成功记2分,否则记0分总得分记为X分(1)若m2,求分数X的概率分布列与数学期望(若结果不为整数
23、,用分数表示)(2)若测试达到n分则中止,记运动员在每一次跳水均取得成功且累计得分为n分的概率为G(n),如求G(2);问是否存在,使得为等比数列,其中?若有,求出;若没有,请说明理由31(2021全国高三专题练习)安庆市某学校高三年级开学之初增加晚自习,晚饭在校食堂就餐人数增多,为了缓解就餐压力,学校在原有一个餐厅的基础上增加了一个餐厅,分别记做餐厅甲和餐厅乙,经过一周左右统计调研分析:前一天选择餐厅甲就餐第二天选择餐厅甲就餐的概率是25%选择餐厅乙就餐的概率为75%,前一天选择餐厅乙就餐第二天选择餐厅乙就餐的概率是50%选择餐厅甲就餐的概率也为50%,如此往复.假设学生第一天选择餐厅甲就餐
24、的概率是,择餐厅乙就餐的概率是,记某同学第n天选择甲餐厅就餐的概率为.(1)记某班级的3位同学第二天选择餐厅甲的人数为X,求X的分布列,并求E(X);(2)请写出与的递推关系;(3)求数列的通项公式并帮助学校解决以下问题:为提高学生服务意识和团队合作精神,学校每天从20个班级中每班抽调一名学生志愿者为全体学生提供就餐服务工作,根据上述数据,如何合理分配到餐厅甲和餐厅乙志愿者人数?请说明理由.32(2021山东模拟预测)某商场拟在年末进行促销活动,为吸引消费者,特别推出“玩游戏,送礼券“的活动,游戏规则如下:每轮游戏都抛掷一枚质地均匀的骰子(形状为正方体,六个面的点数分别为1,2,3,4,5,6
25、),若向上点数不超2点,获得1分,否则获得2分,进行若干轮游戏,若累计得分为19分,则游戏结束,可得到200元礼券,若累计得分为20分,则游戏结束,可得到纪念品一份,最多进行20轮游戏(1)当进行完3轮游戏时,总分为X,求X的期望;(2)若累计得分为i的概率为,(初始得分为0分,)证明数列,(i1,2,19)是等比数列;求活动参与者得到纪念品的概率33(2021安徽马鞍山二模(理)为保护长江流域渔业资源,2020年国家农业农村部发布长江十年禁渔计划.某市为了解决禁渔期渔民的生计问题,试点推出面点汽修两种职业技能培训,一周内渔民可以每天自由选择其中一个进行职业培训,七天后确定具体职业.政府对提供
26、培训的机构有不同的补贴政策:面点培训每天200元/人,汽修培训每天300元/人.若渔民甲当天选择了某种职业培训,第二天他会有0.4的可能性换另一种职业培训.假定渔民甲七天都参与全天培训,且第一天选择的是汽修培训,第天选择汽修培训的概率是(,2,3,7).(1)求;(2)证明:(,2,3,7)为等比数列;(3)试估算一周内政府渔民甲对培训机构补贴总费用的数学期望(近似看作0).34(2021山东省实验中学一模)2020年春天随着疫情的有效控制,高三学生开始返校复课学习.为了减少学生就餐时的聚集排队时间,学校食堂从复课之日起,每天中午都会提供、两种套餐(每人每次只能选择其中一种),经过统计分析发现
27、:学生第一天选择类套餐的概率为、选择类套餐的概率为而前一天选择了类套餐第二天选择类套餐的概率为、选择套餐的概率为;前一天选择类套餐第二天选择类套餐的概率为、选择类套餐的概率也是,如此往复记某同学第天选择类套餐的概率为(1)证明数列是等比数列,并求数列的通项公式;(2)记高三某宿舍的3名同学在复课第二天选择类套餐的人数为,求的分布列并求;(3)为了贯彻五育并举的教育方针,培养学生的劳动意识,一个月后学校组织学生利用课余时间参加志愿者服务活动,其中有20位学生负责为全体同学分发套餐如果你是组长,如何安排分发、套餐的同学的人数呢,说明理由35(2021辽宁实验中学模拟预测)冠状病毒是一个大型病毒家族
28、,已知可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.新型冠状病毒是以前从未在人体中发现的冠状病毒新毒株,人感染了冠状病毒后常见体征有呼吸道症状发热咳嗽气促和呼吸困难等.日前正在世界范围内广泛传播,并对人类生命构成了巨大威胁.针对病毒对人类的危害,科研人员正在不断研发冠状病毒的抑制剂.某种病毒抑制剂的有效率为60%,现设计针对此抑制剂的疗效试验:每次对病毒使用此抑制剂,如病毒被抑制,得分为2分,如抑制剂无效,得分1分,持续进行试验.设得分为时的概率为.(1)进行两次试验后,总得分为随机变量,求的分布列和数学期望;(2)求证:.36(2021福建厦门三模)每天锻炼一小时,健康工作五十年,幸福生活一辈子某公司组织全员每天进行体育锻炼,订制了主题为“百年风云”的系列纪念币奖励员工,该系列纪念币有,四种每个员工每天自主选择“球类”和“田径”中的一项进行锻炼锻炼结束后员工将随机等可能地获得一枚纪念币(1)某员工活动前两天获得,则前四天恰好能集齐“百年风云”系列纪念币的概率是多少?(2)通过抽调查发现:活动首日有的员工选择“球类”,其余的员工选择“田
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年培训机构人员的个人工作计划
- Unit 4 Customs and Traditions Digging in 主题词汇说课稿-2024-2025学年高中英语沪外版(2020)必修第一册
- 2025年学校保卫科工作计划
- 核电池相关行业投资方案
- 2025幼儿园学前班个人工作计划
- 2025年钢铁企业技术中心工作计划
- 2025年第二学期中班个人工作计划
- 2025教师个人校本研修工作计划范本
- 全国清华版信息技术小学一年级下册新授课 第8课 进入神奇的网络世界 说课稿
- 房地产行业销售技巧培训总结
- Unit 2 My Schoolbag ALets talk(说课稿)-2024-2025学年人教PEP版英语四年级上册
- 《基于杜邦分析法的公司盈利能力研究的国内外文献综述》2700字
- 2024年国家公务员考试《行测》真题(行政执法)
- 烟花爆竹安全生产管理人员考试题库附答案(新)
- 国有企业外派董监事、高管人员管理办法
- 2024年个人汽车抵押借款合同范本(四篇)
- 春联课件教学课件
- 北师大版五年级上册脱式计算400道及答案
- 安徽省芜湖市2023-2024学年高一上学期期末考试 地理试题
- 8《美丽文字 民族瑰宝》教学设计2023-2024学年统编版道德与法治五年级上册
- 2024年工业废水处理工(初级)技能鉴定考试题库(含答案)
评论
0/150
提交评论