2022年精品解析沪科版八年级数学下册第18章-勾股定理同步训练试卷(含答案解析)_第1页
2022年精品解析沪科版八年级数学下册第18章-勾股定理同步训练试卷(含答案解析)_第2页
2022年精品解析沪科版八年级数学下册第18章-勾股定理同步训练试卷(含答案解析)_第3页
2022年精品解析沪科版八年级数学下册第18章-勾股定理同步训练试卷(含答案解析)_第4页
2022年精品解析沪科版八年级数学下册第18章-勾股定理同步训练试卷(含答案解析)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、八年级数学下册第18章 勾股定理同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系xOy中,点A的坐标为(0,2),点B的坐标为(,0),点C在x轴上若ABC为等腰三角形时,ABC=

2、30,则点C的坐标为( )A(-2,0),(,0),(-4,0)B(-2,0),(,0),(4+,0)C(-2,0),(,0),(,0)D(-2,0),(1,0),(4-,0)2、如图,在RtDFE中,两个阴影正方形的面积分别为SA36,SB100,则直角三角形DFE的另一条直角边EF的长为( )A5B6C8D103、在棱长为1的正方体中,顶点A,B的位置如图所示,则A、B两点间的距离为( )A1BCD4、下列各组数中,不能作为直角三角形的三边的是( )A3,4,5B2,3,C8,15,17D,5、为了测量学校的景观池的长AB,在BA的延长线上取一点C,使得米,在点C正上方找一点D(即),测得

3、,则景观池的长AB为( )A5米B6米C8米D10米6、中,的对边分别为a,b,c,下列条件能判断是直角三角形的是( )AB,CD7、下列各组数,是勾股数的是( )A,B0.3,0.4,0.5C6,7,8D5,12,138、 中, 是垂足,与交于,则ABCD9、如图,以RtABC(ACBC)的三边为边,分别向外作正方形,它们的面积分别为S1S2S3,若S1S2S312,则S1的值是( )A4B5C6D710、如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的边长为()A64B16C8D4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点P是等

4、边ABC内的一点,PA6,PB8,PC10,若点P是ABC外的一点,且PABPAC,则APB的度数为_2、填空:(1)如图,圆柱的侧面展开图是_,点B的位置应在长方形的边CD的_,点A到点B的最短距离为线段_的长度(2)AB_3、如图,一次函数的图象与x轴交于点A,与y轴交于点B,C是x轴上一动点,连接BC,将ABC沿BC所在的直线折叠,当点A落在y轴上时,点C的坐标为_4、如图,将宽为的纸条沿BC折叠,则折叠后重叠部分的面积为_(根号保留)5、如图,直线交x轴于点A,交y轴于点B,点A1:坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以点A为圆心,AB1长为半径画弧交x轴于点A2;过

5、点A2作x轴的垂线交直线于点B2,以点A为圆心,AB2长为半径画弧交x轴于点A3;按此做法进行下去,点B2021的坐标为_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,ABAC,ABC的高BH,CM交于点P(1)求证:PBPC(2)若PB5,PH3,求BC2、图、图、图都是的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,线段的端点都在格点上分别在图、图、图中以为边画一个等腰三角形,使该三角形的第三个顶点在格点上,且该顶点的位置不同3、一个三角形三边长分别为a,b,c(1)当a3,b4时, c的取值范围是_; 若这个三角形是直角三角形,则c的值是_;(2

6、)当三边长满足时, 若两边长为3和4,则第三边的值是_; 在作图区内,尺规作图,保留作图痕迹,不写作法:已知两边长为a,c(ac),求作长度为b的线段(标注出相关线段的长度)4、(1)如图1,四边形ABCD的对角线ACBD于点O判断AB2+CD2与AD2+BC2的数量关系,并说明理由(2)如图2,分别以RtABC的直角边AB和斜边AC为边向外作正方形ABDM和正方形ACEN,连接BN,CM,交点为O判断CM,BN的关系,并说明理由连接MN若AB2,BC3,请直接写出MN的长5、如图,在长方形中,延长到点,使,连接动点从点出发,沿着以每秒1个单位的速度向终点运动,点运动的时间为秒(1)的长为 ;

7、(2)连接,求当为何值时,;(3)连接,求当为何值时,是直角三角形;(4)直接写出当为何值时,是等腰三角形-参考答案-一、单选题1、A【分析】分别以AB为腰和底两种情况结合勾股定理求解即可【详解】解:如图,点A的坐标为(0,2),点B的坐标为(,0),AO=2,BO=在Rt中,由勾股定理得: 当AB为的腰时, ; 当AB为底边时, 由勾股定理得, 综上,点C的坐标为(-2,0),(,0),(-4,0)故选A【点睛】本题主要考查的是等腰三角形的定义、勾股定理以及解直角三角形,熟练掌握线等腰三角形的性质是解题的关键2、C【分析】根据正方形面积公式可得,然后利用勾股定理求解即可【详解】解:由题意得:

8、,DEF是直角三角形,且DEF=90,故选C【点睛】本题主要考查了以直角三角形三边为边长的图形面积,解题的关键在于能够熟练掌握勾股定理3、C【分析】根据RtABC和勾股定理可得出AB两点间的距离【详解】解:在RtABC中,AC1,BC,可得:AB,故选:C【点睛】本题考查了勾股定理,得出正方体上A、B两点间的距离为直角三角形的斜边是解题关键4、D【分析】由题意直接根据勾股定理的逆定理即如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形,如果没有这种关系,这个就不是直角三角形进行分析判断即可【详解】解:A、32+42=52,符合勾股定理的逆定理,故选项错误;B、,符合勾股定理的

9、逆定理,故选项错误;C、82+152=172,符合勾股定理的逆定理,故选项错误;D、(32)2+(42)2=81+256=337,(52)2=625,(32)2+(42)2(52)2,不符合勾股定理的逆定理即此时三角形不是直角三角形,故选项正确.故选:D.【点睛】本题考查勾股定理的逆定理,注意掌握在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断5、D【分析】利用勾股定理求出CD的长,进而求出BC的长, 即可求解【详解】解:, , , , , , , ,故选:D【点睛】本题考查勾股定理的应用,解题关键是掌握勾股定

10、理6、D【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可【详解】解:A、,且ABC180,60,故ABC不是直角三角形;B、,a2b2c2,故ABC不是直角三角形;C、A:B:C3:4:5,且ABC180,最大角C7590,故ABC不是直角三角形;D、,故ABC是直角三角形;故选:D【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2b2c2,那么这个三角形就是直角三角形也考查了三角形内角和定理7、D【分析】根据能够成为直角三角形三条边长的三个正整数,称为勾股数,即可求解【详解】解:A、不是正整数,则不是勾股数,故本选项不符合题意;B、不是正整数,则不是勾股数,故

11、本选项不符合题意;C、,则不是勾股数,故本选项不符合题意;D、 ,是勾股数,故本选项符合题意;故选:D【点睛】本题主要考查了勾股数的定义,熟练掌握能够成为直角三角形三条边长的三个正整数,称为勾股数是解题的关键8、A【分析】根据题意利用含60的直角三角形性质结合勾股定理进行分析计算即可得出答案.【详解】解:如图,,设,所以勾股定理可得:,则解得:或(舍去),.故选:A.【点睛】本题考查含60的直角三角形性质和勾股定理以及等腰直角三角形,熟练掌握相关的性质是解题的关键.9、C【分析】根据正方形的面积公式结合勾股定理就可发现大正方形的面积是两个小正方形的面积和,即可得出答案【详解】解:由勾股定理得:

12、AC2+BC2=AB2,S3+S2=S1,S1+S2+S3=12,2S1=12,S1=6,故选:C【点睛】题考查了勾股定理和正方形面积的应用,注意:分别以直角三角形的边作相同的图形,则两个小图形的面积等于大图形的面积10、C【分析】根据勾股定理求出正方形A的面积,根据算术平方根的定义计算即可【详解】解:由勾股定理得,正方形A的面积28922564,字母A所代表的正方形的边长为8,故选:C【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2二、填空题1、150【分析】如图:连接PP,由PACPAB可得PAPA、PABPAC,进而可得APP为等边

13、三角形易得PPAPAP6;然后再利用勾股定理逆定理可得BPP为直角三角形,且BPP90,最后根据角的和差即可解答【详解】解:连接PP,PACPAB,PAPA,PABPAC,PAPBAC60,APP为等边三角形,PPAPAP6;PP2+BP2BP2,BPP为直角三角形,且BPP90,APB90+60150故答案为:150【点睛】本题主要考查了全等三角形的性质、等边三角形的判定与性质、勾股定理逆定理的应用等知识点,灵活应用相关知识点成为解答本题的关键2、长方形【分析】(1)根据圆柱的展开图特点和两点之间,线段最短求解即可;(2)根据勾股定理求解即可【详解】解:(1)如图,圆柱的侧面展开图是长方形,

14、点B的位置应在长方形的边CD的中点处,点A到点B的最短距离为线段AB的长度故答案为:长方形;中点处;AB;(2)由勾股定理得: 故答案为:【点睛】本题主要考查了圆柱的侧面展开图,两点之间线段最短,勾股定理,熟知相关知识是解题的关键3、(12,0)或(3,0)【分析】分两种情况讨论:当A点落在y轴坐标轴上A处时,在RtACO中,(8m)2=162+m2,求出m;当A点落在y轴负半轴上A处时,在RtACO中,(8m)2=42+m2,求出m;即可求解【详解】解:,A(8,0),B(0,6),OA=8,OB=6, AB=10,设C(m,0),如图1,当A点落在y轴坐标轴上A处时,连结AA,AC,A与A

15、关于BC对称,AC=AC,AB=AB=10,OA=16,AC=8m,AC=AC=8m,在RtACO中,(8m)2=162+m2,m=12,C(12,0);如图2,当A点落在y轴负半轴上A处时,连结AA,AC,由对称可得,AC=AC=8m,AB=AB=10,OA=4,在RtACO中,(8m)2=42+m2,m=3,C(3,0);综上所述:C点坐标为(12,0)或(3,0),故答案为:(12,0)或(3,0)【点睛】本题考查一次函数的图象及性质,熟练掌握一次函数的图象及性质,灵活应用轴对称的性质,勾股定理解题是关键4、【分析】利用折叠的性质可得出ABC是等腰三角形,有AC=AB;过点C作CGAB于

16、点G,则得CG=2,且CGA为等腰直角三角形,从而可求得AC的值,则可求得面积【详解】如图,由折叠性质得:ECB=ACBDEABDCA=CAB=45DCA+ACB+ECB=180CAB+ACB+ABC=180ABC=ACB=67.5AB=AC即ABC是等腰三角形过点C作CGAB于点G,则CG=2,且ACG=CAB=45CGA为等腰直角三角形AG=CG=2 由勾股定理得:重叠部分ABC的面积为故答案为:【点睛】本题考查了折叠的性质,等腰三角形的判定,勾股定理等知识,判定ABC是等腰三角形是本题的关键5、【分析】根据题意可以写出A和B的前几个点的坐标,从而可以发现各点的变化规律,从而可以写出点B2

17、021的坐标【详解】解:直线,令,则,A1(1,0),轴,将代入得点B1坐标为(1,2),在中,同理,点B2的坐标为点A3坐标为,点B3的坐标为,点Bn的坐标为当n=2021时,点B2021的坐标为,即故答案为:【点睛】本题考查一次函数图象上点的坐标特征、规律型,勾股定理,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答三、解答题1、(1)见详解;(2)【分析】(1)欲证明,只需推知;(2)先求出CH的长,在中,利用勾股定理即可求解【详解】(1)证明:AB=AC,为ABC的高,(2)解:, ,CH=4在RtBHC中,BH=8【点睛】本题考查了等腰三角形的判定,勾股定理,掌握等腰

18、三角形的判定定理及勾股定理是解本题的关键2、见解析【分析】由于AB=5,只能画出以AB为腰的等腰三角形【详解】由于AB=5,则只能画出以AB为腰的等腰三角形,所画图如图、图、图(答案不唯一)【点睛】本题考查了网格中勾股定理的应用,等腰三角形的判定,关键是勾股定理的应用3、(1);或5;(2)2或或5;图见解析【分析】(1)根据三角形的三边关系定理即可得;分斜边长为和斜边长为两种情况,分别利用勾股定理即可得;(2)先根据已知等式得出,再分中有一个为3,;中有一个为4,;中有一个为3,另一个为4三种情况,分别代入求解即可得;先画出射线,再在射线上作线段,然后在射线上作线段,最后作线段的垂直平分线,

19、交于点即可得【详解】解:(1)由三角形的三边关系定理得:,即,故答案为:;当斜边长为时,当斜边长为时,综上,的值为或5,故答案为:或5;(2)由得:,因此,分以下三种情况:当中有一个为3,时,不妨设,则,将代入得:,解得,符合题设,当中有一个为4,时,不妨设,则,将代入得:,解得,符合题设,当中有一个为3,另一个为4时,不妨设,则,将代入得:,解得,符合题设,综上,第三边的值是2或或5,故答案为:2或或5;由得:,如图,线段即为所求【点睛】本题考查了勾股定理、三角形的三边关系定理、作线段和线段垂直平分线(尺规作图)等知识点,较难的是题(2),正确分三种情况讨论是解题关键4、(1);(2) ,CMBN;【分析】(1)根据勾股定理得到 ,同理求出即可求解;(2)证明即可得到;进而得到CMBN,在四边形CMBN中,根据(1)求得的结论即可求出MN的长【详解】解:(1)ACBD, ,在中, ,在中, ,在中, ,在中, , ,即 ;(2)四边形MDBA和四边形ACEN为正方形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论