




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022学年高考数学模拟测试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求
2、的。1已知双曲线的中心在原点且一个焦点为,直线与其相交于,两点,若中点的横坐标为,则此双曲线的方程是ABCD2已知椭圆的焦点分别为,其中焦点与抛物线的焦点重合,且椭圆与抛物线的两个交点连线正好过点,则椭圆的离心率为( )ABCD3设复数满足,则( )ABCD4已知,若,则正数可以为( )A4B23C8D175函数的图象如图所示,则它的解析式可能是( )ABCD6已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为( )ABCD7已知双曲线的左、右焦点分别为、,抛物线与双曲线有相同的焦点.设为抛物线与双曲线的一个交点,且,则双曲线的离心率为( )A或B或C或D或8已知为虚数单位
3、,若复数,则ABCD9易系辞上有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为ABCD10把函数的图象向右平移个单位,得到函数的图象给出下列四个命题的值域为的一个对称轴是的一个对称中心是存在两条互相垂直的切线其中正确的命题个数是( )A1B2C3D411函数在上的大致图象是( )ABCD12某地区高考改革,实行“3+2+1”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,“2”指在化
4、学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有()A8种B12种C16种D20种二、填空题:本题共4小题,每小题5分,共20分。13已知,且,则最小值为_14已知集合,则_15双曲线的焦点坐标是_,渐近线方程是_.16已知全集,集合则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥中,底面为等腰梯形,为等腰直角三角形,平面底面,为的中点.(1)求证:平面;(2)若平面与平面的交线为,求二面角的正弦值.18(12分)(本小题满分12分)已知椭圆C:x2a2+y2b2=1(ab0)的离心率为2
5、2,连接椭圆四个顶点形成的四边形面积为42(1)求椭圆C的标准方程;(2)过点A(1,0)的直线与椭圆C交于点M, N,设P为椭圆上一点,且OM+ON=tOP(t0)O为坐标原点,当|OM-ON|453时,求t的取值范围19(12分)平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为,点(1)求曲线的极坐标方程与直线的直角坐标方程;(2)若直线与曲线交于点,曲线与曲线交于点,求的面积20(12分)如图,在三棱锥ABCD中,ABAD,BCBD,平面ABD平面BCD,点E,F(E与A,D不重合)分别在
6、棱AD,BD上,且EFAD.求证:(1)EF平面ABC;(2)ADAC.21(12分)在; 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在中,内角A,B,C的对边分别为a,b,c,且满足_,求的面积.22(10分)设,.(1)若的最小值为4,求的值;(2)若,证明:或.2022学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】根据点差法得,再根据焦点坐标得,解方程组得,即得结果.【题目详解】设双曲线的方程为,由题意可得,设,则的中点为,由且,得 , ,即,联立,解得,
7、故所求双曲线的方程为故选D【答案点睛】本题主要考查利用点差法求双曲线标准方程,考查基本求解能力,属于中档题.2、B【答案解析】根据题意可得易知,且,解方程可得,再利用即可求解.【题目详解】易知,且故有,则故选:B【答案点睛】本题考查了椭圆的几何性质、抛物线的几何性质,考查了学生的计算能力,属于中档题3、D【答案解析】根据复数运算,即可容易求得结果.【题目详解】.故选:D.【答案点睛】本题考查复数的四则运算,属基础题.4、C【答案解析】首先根据对数函数的性质求出的取值范围,再代入验证即可;【题目详解】解:,当时,满足,实数可以为8.故选:C【答案点睛】本题考查对数函数的性质的应用,属于基础题.5
8、、B【答案解析】根据定义域排除,求出的值,可以排除,考虑排除.【题目详解】根据函数图象得定义域为,所以不合题意;选项,计算,不符合函数图象;对于选项, 与函数图象不一致;选项符合函数图象特征.故选:B【答案点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.6、D【答案解析】由圆与相切可知,圆心到的距离为2,即.又,由此求出的值,利用离心率公式,求出e.【题目详解】由题意得,.故选:D.【答案点睛】本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.7、D【答案解析】设,根据和抛物线性质得出,再根据双曲线性质得出,最后根据余弦定理列方程得出
9、、间的关系,从而可得出离心率【题目详解】过分别向轴和抛物线的准线作垂线,垂足分别为、,不妨设,则,为双曲线上的点,则,即,得,又,在中,由余弦定理可得,整理得,即,解得或.故选:D.【答案点睛】本题考查了双曲线离心率的求解,涉及双曲线和抛物线的简单性质,考查运算求解能力,属于中档题8、B【答案解析】因为,所以,故选B9、A【答案解析】阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.【题目详解】因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.故选:A.【答案点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概
10、率计算公式:.10、C【答案解析】由图象变换的原则可得,由可求得值域;利用代入检验法判断;对求导,并得到导函数的值域,即可判断.【题目详解】由题,则向右平移个单位可得, ,的值域为,错误;当时,所以是函数的一条对称轴,正确;当时,所以的一个对称中心是,正确;,则,使得,则在和处的切线互相垂直,正确.即正确,共3个.故选:C【答案点睛】本题考查三角函数的图像变换,考查代入检验法判断余弦型函数的对称轴和对称中心,考查导函数的几何意义的应用.11、D【答案解析】讨论的取值范围,然后对函数进行求导,利用导数的几何意义即可判断.【题目详解】当时,则,所以函数在上单调递增,令,则,根据三角函数的性质,当时
11、,故切线的斜率变小,当时,故切线的斜率变大,可排除A、B;当时,则,所以函数在上单调递增,令 ,当时,故切线的斜率变大,当时,故切线的斜率变小,可排除C,故选:D【答案点睛】本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题.12、C【答案解析】分两类进行讨论:物理和历史只选一门;物理和历史都选,分别求出两种情况对应的组合数,即可求出结果.【题目详解】若一名学生只选物理和历史中的一门,则有种组合;若一名学生物理和历史都选,则有种组合;因此共有种组合.故选C【答案点睛】本题主要考查两个计数原理,熟记其计数原理的概念,即可求出结果,属于常考题型.二、填空题:本题共
12、4小题,每小题5分,共20分。13、【答案解析】首先整理所给的代数式,然后结合均值不等式的结论即可求得其最小值.【题目详解】,结合可知原式,且,当且仅当时等号成立.即最小值为.【答案点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正各项均为正;二定积或和为定值;三相等等号能否取得”,若忽略了某个条件,就会出现错误14、【答案解析】解一元二次不等式化简集合,再进行集合的交运算,即可得到答案.【题目详解】,.故答案为:.【答案点睛】本题考查一元二次不等式的求解、集合的交运算,考查运算求解能力,属于基础题.15、 【答案解析】通过双曲线的标准方程,求解,即可得到所求的结果【题目详
13、解】由双曲线,可得,则,所以双曲线的焦点坐标是,渐近线方程为:故答案为:;【答案点睛】本题主要考查了双曲线的简单性质的应用,考查了运算能力,属于容易题16、【答案解析】根据补集的定义求解即可.【题目详解】解:故答案为【答案点睛】本题主要考查了补集的运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【答案解析】(1)取的中点,连接,易得,进而可证明四边形为平行四边形,即,从而可证明平面;(2)取中点,中点,连接,易证平面,平面,从而可知两两垂直,以点为坐标原点,向量的方向分别为轴正方向建立如图所示空间直角坐标系,进而求出平面的法向量,及
14、平面的法向量为,由,可求得平面与平面所成的二面角的正弦值.【题目详解】(1)证明:如图1,取的中点,连接.,且,四边形为平行四边形,.又平面,平面,平面.(2)如图2,取中点,中点,连接.,平面平面,平面平面,平面,平面,两两垂直.以点为坐标原点,向量的方向分别为轴正方向建立如图所示空间直角坐标系.由,可得,在等腰梯形中,易知,.则,设平面的法向量为,则,取,得.设平面的法向量为,则,取,得.因为,所以,所以平面与平面所成的二面角的正弦值为.【答案点睛】本题考查线面平行的证明,考查二面角的求法,利用空间向量法是解决本题的较好方法,属于中档题.18、(1)x24+y22=1;(2)t-1,-63
15、)(63,1【答案解析】试题分析:本题主要考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力第一问,先利用离心率、a2=b2+c2、四边形的面积列出方程,解出a和b的值,从而得到椭圆的标准方程;第二问,讨论直线MN的斜率是否存在,当直线MN的斜率存在时,直线方程与椭圆方程联立,消参,利用韦达定理,得到x1+x2、x1x2,利用OM+ON=tOP列出方程,解出P(x,y),代入到椭圆上,得到t2的值,再利用|OM-ON|0恒成立,x1+x2=4k21+2k2,x1x2=2k2-41+2k2,y1+y2=k(x1+x2)-2k=-2
16、k1+2k2,又OM+ON=tOP,x1+x2=tx,y1+y2=ty,x=x1+x2t=4k2t(1+2k2),y=y1+y2t=-2kt(1+2k2),因为点P在椭圆x24+y22=1上,所以16k4t2(1+2k2)2+8k2t2(1+2k2)2=4,即2k2=t2(1+2k2),t2=2k21+2k2=1-11+2k2,又|OM-ON|453,即|NM|453,1+k2|x1-x2|453,整理得:1+k24+6k21+2k20,解得k21或k2-813(舍),t2=1-11+2k2,23t21,即t(-1,-63)(63,1)当直线MN的斜率不存在时,M(1,62),N(1,-62)
17、,此时t=1,t-1,-63)(63,1考点:椭圆的标准方程及其几何性质、直线与椭圆的位置关系19、(1)(2)【答案解析】(1)根据题意代入公式化简即可得到.(2)联立极坐标方程通过极坐标的几何意义求解,再求点到直线的距离即可算出三角形面积.【题目详解】解:(1)曲线,即曲线的极坐标方程为直线的极坐标方程为,即,直线的直角坐标方程为(2)设,解得又,(舍去)点到直线的距离为,的面积为【答案点睛】此题考查参数方程,极坐标,直角坐标之间相互转化,注意参数方程只能先转化为直角坐标再转化为极坐标,属于较易题目.20、(1)见解析(2)见解析【答案解析】试题分析:(1)先由平面几何知识证明,再由线面平
18、行判定定理得结论;(2)先由面面垂直性质定理得平面,则,再由ABAD及线面垂直判定定理得AD平面ABC,即可得ADAC试题解析:证明:(1)在平面内,因为ABAD,所以.又因为平面ABC,平面ABC,所以EF平面ABC.(2)因为平面ABD平面BCD,平面平面BCD=BD, 平面BCD,所以平面.因为平面,所以 .又ABAD,平面ABC,平面ABC,所以AD平面ABC,又因为AC平面ABC,所以ADAC.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直21、横线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专题22 能源与可持续发展-2025年中考《物理》一轮复习知识清单与解题方法
- 二零二五年度药品研发成果许可与销售分成合同范本
- 2025年度劳动合同法企业劳动争议调解中心设立合同
- 河道整治砂石运输合同模板
- 2025年度生物科技行业劳动合同解除协议范本
- 2025年度供应链金融应收账款回款合作协议
- 家具销售居间合同文件资料
- 2025年度品牌连锁店铺授权经营合同
- 2025年度山林资源承包与生态补偿金支付合同书
- 二零二五年度企业员工绩效对赌合作框架协议
- 护苗行动安全教育课件
- 生物-山东省潍坊市、临沂市2024-2025学年度2025届高三上学期期末质量检测试题和答案
- 2025年小学督导工作计划
- 2024-2025学年部编版历史九年级上册期末复习练习题(含答案)
- 矿山工程安全培训课件
- 基于ChatGPT的ESG评级体系实现机制研究
- 2024年精对苯二甲酸市场分析报告
- 成人手术后疼痛评估与护理团体标准
- 2025年中考数学二轮专题复习 题型四-二次函数图象与性质综合题
- 春节申遗成功的意义
- 上海市黄浦区2022-2023学年九年级上学期期末化学试卷(一模)
评论
0/150
提交评论