2022届安徽省安庆一中高考数学全真模拟密押卷(含解析)_第1页
2022届安徽省安庆一中高考数学全真模拟密押卷(含解析)_第2页
2022届安徽省安庆一中高考数学全真模拟密押卷(含解析)_第3页
2022届安徽省安庆一中高考数学全真模拟密押卷(含解析)_第4页
2022届安徽省安庆一中高考数学全真模拟密押卷(含解析)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022学年高考数学模拟测试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求

2、的。1幻方最早起源于我国,由正整数1,2,3,这个数填入方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫阶幻方定义为阶幻方对角线上所有数的和,如,则( )A55B500C505D50502已知定义在上的偶函数,当时,设,则( )ABCD3已知集合,则( )ABCD4已知复数满足,(为虚数单位),则( )ABCD35已知,则的最小值为( )ABCD6若、满足约束条件,则的最大值为( )ABCD7复数()ABC0D8执行下面的程序框图,如果输入,则计算机输出的数是( )ABCD9已知向量,且与的夹角为,则( )AB1C或1D或910甲、乙、丙三人相约晚上在某地会面,已知这三人都

3、不会违约且无两人同时到达,则甲第一个到、丙第三个到的概率是( )ABCD11是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件12已知抛物线的焦点与双曲线的一个焦点重合,且抛物线的准线被双曲线截得的线段长为,那么该双曲线的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数为奇函数,则_.14下表是关于青年观众的性别与是否喜欢综艺“奔跑吧,兄弟”的调查数据,人数如下表所示:不喜欢喜欢男性青年观众4010女性青年观众3080现要在所有参与调查的人中用分层抽样的方法抽取个人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了8人,则的值为_

4、.15直线xsiny20的倾斜角的取值范围是_16根据如图所示的伪代码,输出的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)2019年安庆市在大力推进城市环境、人文精神建设的过程中,居民生活垃圾分类逐渐形成意识.有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图:(1)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布,近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求P();(2)在(

5、1)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案:(i)得分不低于可获赠2次随机话费,得分低于则只有1次:(ii)每次赠送的随机话费和对应概率如下:赠送话费(单位:元)1020概率现有一位市民要参加此次问卷调查,记X(单位:元)为该市民参加问卷调查获赠的话费,求X的分布列.附:,若,则,.18(12分)如图,四边形为菱形,为与的交点,平面.(1)证明:平面平面;(2)若,三棱锥的体积为,求菱形的边长.19(12分)已知函数.(1)求函数的单调区间;(2)当时,如果方程有两个不等实根,求实数t的取值范围,并证明.20(12分)对于很多人来说,提前消费的认识首先是源于信用卡,在那个工

6、资不高的年代,信用卡绝对是神器,稍微大件的东西都是可以选择用信用卡来买,甚至于分期买,然后慢慢还!现在银行贷款也是很风靡的,从房贷到车贷到一般的现金贷信用卡“忽如一夜春风来”,遍布了各大小城市的大街小巷为了解信用卡在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了100人进行抽样分析,得到如下列联表(单位:人)经常使用信用卡偶尔或不用信用卡合计40岁及以下15355040岁以上203050合计3565100(1)根据以上数据,能否在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关?(2)现从所抽取的40岁及以下的网民中,按“经常使用”与“偶尔或不用

7、”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出4人赠送积分,求选出的4人中至少有3人偶尔或不用信用卡的概率;将频率视为概率,从市所有参与调查的40岁以上的网民中随机抽取3人赠送礼品,记其中经常使用信用卡的人数为,求随机变量的分布列、数学期望和方差参考公式:,其中参考数据:0.150.100.050.0250.0102.0722.7063.8415.0246.63521(12分)已知函数.(1)求不等式的解集;(2)若正数、满足,求证:.22(10分)分别为的内角的对边.已知.(1)若,求;(2)已知,当的面积取得最大值时,求的周长.2022学年模拟测试卷参考答案(含详细解析)

8、一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】因为幻方的每行、每列、每条对角线上的数的和相等,可得,即得解.【题目详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以阶幻方对角线上数的和就等于每行(或每列)的数的和,又阶幻方有行(或列),因此,于是故选:C【答案点睛】本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.2、B【答案解析】根据偶函数性质,可判断关系;由时,求得导函数,并构造函数,由进而判断函数在时的单调性,即可比较大小.【题目详解】为定义在上的偶函数,所以所以;当时,则,令则,当时,则

9、在时单调递增,因为,所以,即,则在时单调递增,而,所以,综上可知,即,故选:B.【答案点睛】本题考查了偶函数的性质应用,由导函数性质判断函数单调性的应用,根据单调性比较大小,属于中档题.3、B【答案解析】计算,再计算交集得到答案【题目详解】,表示偶数,故.故选:.【答案点睛】本题考查了集合的交集,意在考查学生的计算能力.4、A【答案解析】,故,故选A.5、B【答案解析】 ,选B6、C【答案解析】作出不等式组所表示的可行域,平移直线,找出直线在轴上的截距最大时对应的最优解,代入目标函数计算即可.【题目详解】作出满足约束条件的可行域如图阴影部分(包括边界)所示由,得,平移直线,当直线经过点时,该直

10、线在轴上的截距最大,此时取最大值,即.故选:C.【答案点睛】本题考查简单的线性规划问题,考查线性目标函数的最值,一般利用平移直线的方法找到最优解,考查数形结合思想的应用,属于基础题.7、C【答案解析】略8、B【答案解析】先明确该程序框图的功能是计算两个数的最大公约数,再利用辗转相除法计算即可.【题目详解】本程序框图的功能是计算,中的最大公约数,所以,故当输入,则计算机输出的数是57.故选:B.【答案点睛】本题考查程序框图的功能,做此类题一定要注意明确程序框图的功能是什么,本题是一道基础题.9、C【答案解析】由题意利用两个向量的数量积的定义和公式,求的值.【题目详解】解:由题意可得,求得,或,故

11、选:C.【答案点睛】本题主要考查两个向量的数量积的定义和公式,属于基础题10、D【答案解析】先判断是一个古典概型,列举出甲、乙、丙三人相约到达的基本事件种数,再得到甲第一个到、丙第三个到的基本事件的种数,利用古典概型的概率公式求解.【题目详解】甲、乙、丙三人相约到达的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,其中甲第一个到、丙第三个到有甲乙丙,共1种,所以甲第一个到、丙第三个到的概率是. 故选:D【答案点睛】本题主要考查古典概型的概率求法,还考查了理解辨析的能力,属于基础题.11、B【答案解析】分别判断充分性和必要性得到答案.【题目详解】所以 (逆否命题)必要性成立当,

12、不充分故是必要不充分条件,答案选B【答案点睛】本题考查了充分必要条件,属于简单题.12、A【答案解析】由抛物线的焦点得双曲线的焦点,求出,由抛物线准线方程被曲线截得的线段长为,由焦半径公式,联立求解.【题目详解】解:由抛物线,可得,则,故其准线方程为,抛物线的准线过双曲线的左焦点,抛物线的准线被双曲线截得的线段长为,又,则双曲线的离心率为故选:【答案点睛】本题考查抛物线的性质及利用过双曲线的焦点的弦长求离心率. 弦过焦点时,可结合焦半径公式求解弦长二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】利用奇函数的定义得出,结合对数的运算性质可求得实数的值.【题目详解】由于函数为奇函

13、数,则,即,整理得,解得.当时,真数,不合乎题意;当时,解不等式,解得或,此时函数的定义域为,定义域关于原点对称,合乎题意.综上所述,.故答案为:.【答案点睛】本题考查利用函数的奇偶性求参数,考查了函数奇偶性的定义和对数运算性质的应用,考查计算能力,属于中等题.14、32【答案解析】由已知可得抽取的比例,计算出所有被调查的人数,再乘以抽取的比例即为分层抽样的样本容量.【题目详解】由题可知,抽取的比例为,被调查的总人数为人,则分层抽样的样本容量是人.故答案为:32【答案点睛】本题考查分层抽样中求样本容量,属于基础题.15、【答案解析】因为sin 1,1,所以sin 1,1,所以已知直线的斜率范围

14、为1,1,由倾斜角与斜率关系得倾斜角范围是答案:16、7【答案解析】表示初值S=1,i=1,分三次循环计算得S=100,输出i=7.【题目详解】S=1,i=1第一次循环:S=1+1=2,i=1+2=3;第二次循环:S=2+3=5,i=3+2=5;第三次循环:S=5+5=10,i=5+2=7;S=109,循环结束,输出:i=7.故答案为:7【答案点睛】本题考查在程序语句的背景下已知输入的循环结构求输出值问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)详见解析【答案解析】(1)利用频率分布直方图平均数等于小矩形的面积乘以底边中点横坐标之和,再利用正

15、态分布的对称性进行求解.(2)写出随机变量的所有可能取值,利用互斥事件和相互独立事件同时发生的概率计算公式,再列表得到其分布列.【题目详解】解:(1)从这1000人问卷调查得到的平均值为由于得分Z服从正态分布,(2)设得分不低于分的概率为p,(或由频率分布直方图知)法一:X的取值为10,20,30,40;所以X的分布列为X10203040P法二:2次随机赠送的话费及对应概率如下2次话费总和203040PX的取值为10,20,30,40;所以X的分布列为X10203040P【答案点睛】本题考查了正态分布、离散型随机变量的分布列,属于基础题.18、(1)证明见解析;(2)1【答案解析】(1)由菱形

16、的性质和线面垂直的性质,可得平面,再由面面垂直的判定定理,即可得证;(2)设,分别求得,和的长,运用三棱锥的体积公式,计算可得所求值【题目详解】(1)四边形为菱形,平面,又,平面,又平面,平面平面;(2)设,在菱形中,由,可得,在中,可得,由面,知,为直角三角形,可得,三棱锥的体积,菱形的边长为1【答案点睛】本题考查面面垂直的判定,注意运用线面垂直转化,考查三棱锥的体积的求法,考查化简运算能力和推理能力,意在考查学生对这些知识的理解掌握水平19、(1)当时,的单调递增区间是,单调递减区间是;当时,的单调递增区间是,单调递减区间是;(2),证明见解析.【答案解析】(1)求出,对分类讨论,分别求出

17、的解,即可得出结论;(2)由(1)得出有两解时的范围,以及关系,将,等价转化为证明,不妨设,令,则,即证,构造函数,只要证明对于任意恒成立即可.【题目详解】(1)的定义域为R,且.由,得;由,得.故当时,函数的单调递增区间是,单调递减区间是;当时,函数的单调递增区间是,单调递减区间是.(2)由(1)知当时,且.当时,;当时,.当时,直线与的图像有两个交点,实数t的取值范围是.方程有两个不等实根,即.要证,只需证,即证,不妨设.令,则,则要证,即证.令,则.令,则,在上单调递增,.,在上单调递增,即成立,即成立.【答案点睛】本题考查函数与导数的综合应用,涉及到函数单调性、极值、零点、不等式证明,

18、构造函数函数是解题的关键,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.20、(1)不能在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关;(2);分布列见解析,【答案解析】(1)计算再对照表格分析即可.(2)根据分层抽样的方法可得经常使用信用卡的有人,偶尔或不用信用卡的有人,再根据超几何分布的方法计算3人或4人偶尔或不用信用卡的概率即可.利用二项分布的特点求解变量的分布列、数学期望和方差即可.【题目详解】(1)由列联表可知,因为,所以不能在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关.(2)依题意,可知所抽取的10名40岁及以下网民中,经常使用信用卡的有(人),偶尔或不用信用卡的有(人).则选出的4人中至少有3人偶尔或不用信用卡的概率.由列联表,可知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论