版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、直线的方程主要内容3.2.2 直线的两点式方程3.2.3 直线的一般式方程3.2.1 直线的点斜式方程直线的点斜式方程我们知道给出直线的两个因素,直线就能够确定,即将直线放在直角坐标系中就能够确定其方程。(1)在直角坐标系中如果给出直线上一点和直线的倾斜角(斜率),我们可以确定一条直线。(2)如果给出两点 那么直线 也可以确定。问题一 在平面直角坐标系内,如果给定一条直线 经过的一个点 和斜率 ,能否将直线上所有的点的坐标 满足的关系表示出来呢?xyOl思考?即:xyOl 直线 经过点 ,且斜率为 ,设点 是直线上不同于点 的任意一点,因为直线 的斜率为 ,由斜率公式得:P (1)过点 ,斜率
2、是 的直线 上的点,其坐标都满足方程 吗? (2)坐标满足方程 的点都在过点 斜率为 的直线 上吗? 上述两条都成立,所以这个方程就是过点 斜率为 的直线 的方程思考?点斜式方程(简称点斜式)局限性:只适用于斜率存在的情形。问题:平面内的任意直线是否都可以用点斜式方程来表示呢?,或xyOl的方程就是(1) 轴所在直线或平行于x轴的直线的方程是什么?思考? 当直线 的倾斜角为 时,即 这时直线 与 轴平行或重合,思考(2) 轴所在直线或平行于y轴的直线的方程是什么?,或当直线 的倾斜角为 时,直线没有斜率,这时,直线 与 轴平行或重合,它的方程不能用点斜式表示这时,直线 上每一点的横坐标都等于
3、,所以它的方程就是xyOl思考? 例1 直线 l 经过点P0(-2,3),且倾斜角为600,求直线l的点斜式方程,并画出直线 l. P0Pxyo练习1:根据下列条件,分别写出方程;(1)经过点(4,-2),斜率为3;(2)经过点(3,1),斜率为 ;(3)经过点(2,3),倾斜角为 ;(4)经过点(2,5),倾斜角为 ;(5)经过点(-4,-2),倾斜角为 ;(6)斜率为2,与x轴交点的横坐标为-7;练习 如果直线 的斜率为 ,且与 轴的交点为得直线的点斜式方程, 也就是:xyOlb 我们把直线与 轴交点的纵坐标叫做直线在y轴上的截距。 该方程由直线的斜率与它在 轴上的截距确定,所以该方程叫做
4、直线的斜截式方程,简称斜截式.截距的值是实数,它是坐标值,不是距离 方程 与我们学过的一次函数的表达式类似我们知道,一次函数的图象是一条直线你如何从直线方程的角度认识一次函数 ?一次函数中 和 的几何意义是什么? 你能说出一次函数 及 图象的特点吗?问题斜截式是点斜式的特例。只适用于斜率存在的情形。练习2:根据下列条件,分别写出方程;(1)在Y轴上的截距为-2,斜率为3;(2)在Y轴上的截距为5,斜率为 ;(3)在Y轴上的截距为1,倾斜角为 ;(4)斜率为2,与x轴交点的横坐标为-7;练习3: 例2 已知直线 ,试讨论:(1) 的条件是什么?(2) 的条件是什么? 解:(1)若 ,则 ,此时
5、与 轴的交点不同,即 ;反之, ,且 时, (2)若 ,则 ;反之, 时, 典型例题 例3 求下列直线的方程: (1)经过点A(-1,2),且与直线 y=3x+1垂直; 练习 例4 已知直线L:5ax-5y-a+3=0,求证:无论a为何值,直线L恒过第一象限; 例5 已知直线 l 的斜率为 ,且与两坐标轴围成的三角形的面积为4,求直线l的方程.小结直线和x轴平行时,倾斜角=0直线与x轴垂直时,倾斜角=90特殊情况方程名称已知条件直线方程应用范围点斜式斜截式作业.求符合下列条件的直线方程:过点P(1,2)且与 的夹角为30;过点P(1,2)且与两坐标轴的截距相等.简答:作业P95练习:1,2,3
6、,4P100习题3.2 A组:1,5,6,10.直线的两点式方程思考? 已知直线经过两点P1(x1,y1),P2(x2,y2),(x1x2 ,y1y2),如何求出这两个点的直线方程呢? 经过一点,且已知斜率的直线,可以写出它的点斜式方程. 可以先求出斜率,再选择一点,得到点斜式方程.xylP2(x2,y2)两点式P1(x1,y1)斜率根据两点P1(x1,y1),P2(x2,y2),记忆特点:左边全为y,右边全为x两边的分母全为常数 分子,分母中的减数相同两点式不是! 是不是已知任一直线中的两点就能用两点式 写出直线方程呢? 两点式不能表示平行于坐标轴或与坐标轴重合的直线注意: 当x1 x2或y
7、1= y2时,直线P1 P2没有两点式方程.( 因为x1 x2或y1= y2时,两点式的分母为零,没有意义) 那么两点式不能用来表示哪些直线的方程呢?三、两点式方程的适应范围 若点P1 ( x1 , y1 ),P2( x2 , y2)中有x1 x2 ,或y1= y2,此时过这两点的直线方程是什么?当x1 x2 时方程为: x x当 y1= y2时方程为: y= y1.求经过下列两点的直线的两点式方程,再化斜截式方程.(1)P(2,1),Q(0,-3)(2)A(0,5),B(5,0)(3)C(-4,-5),D(0,0)课堂练习:xylA(a,0)截距式B(0,b)解:代入两点式方程得化简得横截距
8、纵截距 已知直线经过点A(a,0),B(0,b),a0,b0,求直线方程截距可是正数,负数和零 注意:不能表示过原点或与坐标轴平行或重合的直线 直线与x轴的交点(a,0)的横坐标a叫做直线在x轴上的截距是不是任意一条直线都有其截距式方程呢?截距式直线方程: 直线与y轴的交点(0,b)的纵坐标b叫做直线在y轴上的截距截距式方程:注意:等式的右边是常数1,左边x、y前的系数都为1,此时的a和b才是横截距和纵截距说出在坐标轴上的截距2.根据下列条件求直线方程(1)在x轴上的截距为2,在y轴上的截距是3;(2)在x轴上的截距为-5,在y轴上的截距是6;由截距式得: 整理得:由截距式得: 整理得:4.中
9、点坐标公式 已知两点P1(x1,y1),P2(x2,y2)则线段P1P2的中点P0的坐标是什么?xyA(x1,y1)B(x2,y2)中点P0的坐标为 例1:已知角形的三个顶点是A(5,0)B(3,3),C(0,2),求BC边所在的直线方程,以及该边上中线的直线方程。解:过B(3,-3),C(0,2)两点式方程为:整理得:5x+3y-6=0这就是BC边所在直线的方程。五、直线方程的应用 BC边上的中线是顶点A与BC边中点M所连线段,由中点坐标公式可得点M的坐标为:即整理得:x+13y+5=0这就是BC边上中线所在的直线的方程。 过A(-5,0),M 的直线方程MM 过(1,2)并且在两个坐标轴上
10、的截距相等的直线有几条?解: 两条例2:那还有一条呢?y=2x (与x轴和y轴的截距都为0)所以直线方程为:x+y-3=0a=3把(1,2)代入得:设 直线的方程为: 变式1: 过(1,2)并且在两个坐标轴上的截距的互为相反数的直线有几条? 解:三条 变式2: 过(1,2)并且在两个坐标轴上的截距的绝对值相等的直线有几条? 解得:a=b=3或a=-b=-1直线方程为:y+x-3=0、y-x-1=0或y=2x设0 xyab 例4. 已知直线 l 经过点P(1,2),并且点A(2,3)和点 B(4,-5)到直线l 的距离相等,求直线l 的方程.PxyoBA直线方程小结两点坐标两点式点斜式两个截距截
11、距式P97练习:1,P100习题组:3,4,8,9,11.作业直线的一般式方程小结点斜式斜率和一点坐标斜截式斜率k和截距b两点坐标两点式两个截距截距式 以上我们介绍了直线方程的几种特殊形式,它们都是关于x和y的二元一次方程,那么,关于x和y的二元一次方程 Ax+By+C=0(A,B不全为0)都表示直线吗?思考? 1. 平面直角坐标系中的每一条直线都可以用一个关于x,y的二元一次方程表示吗? 直线的点斜式、斜截式、两点式、截距式都是关于X,y的二元一次方程 其中经过点P(x0,y0)且斜率不存在的直线的方程: x-x0=0 可以看成y的系数为0的二元一次方程.2.反过来对于二元一次方程 Ax+B
12、y+C=0(A,B不全为零)能否表示直线?1)当B0时可化为 表示经过点(0, ),斜率k为 的直线.2) 当B=0时,A0,方程可化为表示垂直于x轴的直线.思考?直线的一般式方程(其中A,B不同时为0)1. 所有的直线都可以用二元一次方程表示2. 所有二元一次方程都表示直线此方程叫做直线的一般式方程例1:求直线3X+5Y-15=0的斜率以及它在坐标轴上的截距,并作图。 例2 已知直线经过点A(6,-4),斜率为 ,求直线的点斜式和一般式方程.练习:例3:设直线L的方程为: 根据下列条件分别确定m的值:(1)直线L在x轴上的截距是-3;(2)若L在两坐标轴上的截距相等; (3 ) 直线L的斜率
13、是1;(4)若L不经过第二象限。在方程 中,A,B,C为何值时 ,方程表示的直线1)平行于X轴,2)平行于Y轴,3)与X轴重合,4)与Y轴重合,5) 过原点。两条直线平行和垂直的条件平行垂直重合 例4 已知直线 l1:ax+(a+1)y-a=0 和 l2:(a+2)x+2(a+1)y-4=0, 若l1/l2,求a的值. 例5 已知直线l1:x-ay-1=0和l2:a2x+y+2=0,若l1l2,求a的值.例6练习:已知A(3,-1),B(5,-2),点P在直线2x+y=0上,若使 取最小值,求P点的坐标小结点斜式斜率和一点坐标斜截式斜率k和截距b两点坐标两点式两个截距截距式一般式y-y1=k(x-x1)(1)这个方程是由直线上一点和斜率确定的(2)当直线l的倾斜角为0时,直线方程为y=y1(3)当直线倾斜角90时,直线没有斜率,方程 式不能用点斜式表示,直线方程为x=x11.点斜式: y=kx+b 说明: (1)上述方程是由直线l的斜率和它的纵截距确定的,叫做直线的方程的斜截式。 (2)纵截距可以大于0,也可以等于0或小于0。2.斜截式:说明:(1)这个方程是由直线上两点确定; (2)当直线没斜率或斜率为0时,不能用两点式来表示;3.两点式:说明:(1)这一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职(现代农业技术)现代农业装备试题及答案
- 2025年高职物流案例与实践(物流创新)试题及答案
- 2025年中职油气开采技术(油气开采实操)试题及答案
- 2025年中职印刷媒体技术(印刷工艺基础)试题及答案
- 2026年注册消防工程师(一级消防安全案例分析-建筑防火)试题及答案
- 2025年中职数控技术应用(数控车床操作)试题及答案
- 2025年高职电子技术应用(放大电路设计)试题及答案
- 2025年中职第三学年(计算机应用)网页设计实操试题及答案
- 2025年大学信息对抗技术(信息对抗方案)模拟试题
- 2025年大三(临床医学)外科学基础期末试题
- 2025年广东省深圳市检察官逐级遴选笔试题目及答案
- 2026湖北随州市纪委监委机关专项招聘以钱养事工作人员3人考试参考试题及答案解析
- 2026特区建工集团校园招聘(公共基础知识)测试题附答案
- 齿轮泵的课件
- 医院感染控制的智能预警系统设计
- 2025年苏州工业园区领军创业投资有限公司招聘备考题库及1套完整答案详解
- 2025网格员考试理论题目及答案
- 2026年记者(新闻基础知识)自测试题及答案
- 2026年山东黄河河务局山东黄河医院公开招聘高校毕业生参考笔试试题及答案解析
- 2026届高考政治一轮复习:选择性必修1~3共3册必背主干知识点考点汇编
- 万物皆模型:100个思维模型
评论
0/150
提交评论