




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1是边长为的等边三角形,、分别为、的中点,沿把折起,使点翻折到点的位置,连接、,当四棱锥的外接球的表面积最小时,四棱
2、锥的体积为( )ABCD2已知的内角、的对边分别为、,且,为边上的中线,若,则的面积为( )ABCD3等腰直角三角形BCD与等边三角形ABD中,现将沿BD折起,则当直线AD与平面BCD所成角为时,直线AC与平面ABD所成角的正弦值为( ) ABCD4设,集合,则()ABCD5已知偶函数在区间内单调递减,则,满足( )ABCD6双曲线的渐近线方程为( )ABCD7已知是的共轭复数,则( )ABCD8设F为双曲线C:(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点若|PQ|=|OF|,则C的离心率为ABC2D9函数 的部分图象如图所示,则 ( )A6B5C4
3、D310已知集合A2,1,0,1,2,Bx|x24x50,则AB()A2,1,0B1,0,1,2C1,0,1D0,1,211设为虚数单位,为复数,若为实数,则( )ABCD12已知为圆:上任意一点,若线段的垂直平分线交直线于点,则点的轨迹方程为( )ABC()D()二、填空题:本题共4小题,每小题5分,共20分。13已知,则_.(填“”或“=”或“”).14在区间内任意取一个数,则恰好为非负数的概率是_.15设等差数列的前项和为,若,则_,的最大值是_.16如图,在体积为V的圆柱中,以线段上的点O为项点,上下底面为底面的两个圆锥的体积分别为,则的值是_.三、解答题:共70分。解答应写出文字说明
4、、证明过程或演算步骤。17(12分)已知函数,.(1)若曲线在点处的切线方程为,求,;(2)当时,求实数的取值范围.18(12分)一张边长为的正方形薄铝板(图甲),点,分别在,上,且(单位:).现将该薄铝板沿裁开,再将沿折叠,沿折叠,使,重合,且重合于点,制作成一个无盖的三棱锥形容器(图乙),记该容器的容积为(单位:),(注:薄铝板的厚度忽略不计)(1)若裁开的三角形薄铝板恰好是该容器的盖,求,的值;(2)试确定的值,使得无盖三棱锥容器的容积最大.19(12分)已知函数()求在点处的切线方程;()求证:在上存在唯一的极大值;()直接写出函数在上的零点个数20(12分)已知椭圆:()的左、右顶点
5、分别为、,焦距为2,点为椭圆上异于、的点,且直线和的斜率之积为.(1)求的方程;(2)设直线与轴的交点为,过坐标原点作交椭圆于点,试探究是否为定值,若是,求出该定值;若不是,请说明理由.21(12分)已知椭圆的左、右顶点分别为、,上、下顶点分别为,为其右焦点,且该椭圆的离心率为;()求椭圆的标准方程;()过点作斜率为的直线交椭圆于轴上方的点,交直线于点,直线与椭圆的另一个交点为,直线与直线交于点若,求取值范围22(10分)已知函数,其中,为自然对数的底数.(1)当时,证明:对;(2)若函数在上存在极值,求实数的取值范围。参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四
6、个选项中,只有一项是符合题目要求的。1D【解析】首先由题意得,当梯形的外接圆圆心为四棱锥的外接球球心时,外接球的半径最小,通过图形发现,的中点即为梯形的外接圆圆心,也即四棱锥的外接球球心,则可得到,进而可根据四棱锥的体积公式求出体积.【详解】如图,四边形为等腰梯形,则其必有外接圆,设为梯形的外接圆圆心,当也为四棱锥的外接球球心时,外接球的半径最小,也就使得外接球的表面积最小,过作的垂线交于点,交于点,连接,点必在上,、分别为、的中点,则必有,即为直角三角形.对于等腰梯形,如图:因为是等边三角形,、分别为、的中点,必有,所以点为等腰梯形的外接圆圆心,即点与点重合,如图,所以四棱锥底面的高为,.故
7、选:D.【点睛】本题考查四棱锥的外接球及体积问题,关键是要找到外接球球心的位置,这个是一个难点,考查了学生空间想象能力和分析能力,是一道难度较大的题目.2B【解析】延长到,使,连接,则四边形为平行四边形,根据余弦定理可求出,进而可得的面积.【详解】解:延长到,使,连接,则四边形为平行四边形,则,在中,则,得,.故选:B.【点睛】本题考查余弦定理的应用,考查三角形面积公式的应用,其中根据中线作出平行四边形是关键,是中档题.3A【解析】设E为BD中点,连接AE、CE,过A作于点O,连接DO,得到即为直线AD与平面BCD所成角的平面角,根据题中条件求得相应的量,分析得到即为直线AC与平面ABD所成角
8、,进而求得其正弦值,得到结果.【详解】设E为BD中点,连接AE、CE,由题可知,所以平面,过A作于点O,连接DO,则平面,所以即为直线AD与平面BCD所成角的平面角,所以,可得,在中可得,又,即点O与点C重合,此时有平面,过C作与点F,又,所以,所以平面,从而角即为直线AC与平面ABD所成角,故选:A.【点睛】该题考查的是有关平面图形翻折问题,涉及到的知识点有线面角的正弦值的求解,在解题的过程中,注意空间角的平面角的定义,属于中档题目.4B【解析】先化简集合A,再求.【详解】由 得: ,所以 ,因此 ,故答案为B【点睛】本题主要考查集合的化简和运算,意在考查学生对这些知识的掌握水平和计算推理能
9、力.5D【解析】首先由函数为偶函数,可得函数在内单调递增,再由,即可判定大小【详解】因为偶函数在减,所以在上增,.故选:D【点睛】本题考查函数的奇偶性和单调性,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,属于中档题.6A【解析】将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.【详解】双曲线得,则其渐近线方程为,整理得.故选:A【点睛】本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.7A【解析】先利用复数的除法运算法则求出的值,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b【详解】i,a+bii,a0,b1,a+b1,故选:A【点
10、睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题8A【解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,即,故选A【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来9A【解析】根据正切函数的图象求出A、B两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果【详解】由图象得
11、,令=0,即=k,k=0时解得x=2,令=1,即,解得x=3,A(2,0),B(3,1),.故选:A.【点睛】本题考查正切函数的图象,平面向量数量积的运算,属于综合题,但是难度不大,解题关键是利用图象与正切函数图象求出坐标,再根据向量数量积的坐标运算可得结果,属于简单题.10D【解析】解一元二次不等式化简集合,再由集合的交集运算可得选项.【详解】因为集合,故选:D.【点睛】本题考查集合的交集运算,属于基础题.11B【解析】可设,将化简,得到,由复数为实数,可得,解方程即可求解【详解】设,则.由题意有,所以.故选:B【点睛】本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题12B
12、【解析】如图所示:连接,根据垂直平分线知,故轨迹为双曲线,计算得到答案.【详解】如图所示:连接,根据垂直平分线知,故,故轨迹为双曲线,故,故轨迹方程为.故选:.【点睛】本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13【解析】注意到,故只需比较与1的大小即可.【详解】由已知,故有.又由,故有.故答案为:.【点睛】本题考查对数式比较大小,涉及到换底公式的应用,考查学生的数学运算能力,是一道中档题.14【解析】先分析非负数对应的区间长度,然后根据几何概型中的长度模型,即可求解出“恰好为非负数”的概率.【详解】当是非负数时,区间长度是,又因为对
13、应的区间长度是,所以“恰好为非负数”的概率是.故答案为:.【点睛】本题考查几何概型中的长度模型,难度较易.解答问题的关键是能判断出目标事件对应的区间长度.15 【解析】利用等差数列前项和公式,列出方程组,求出首项和公差的值,利用等差数列的通项公式可求出数列的通项公式,可求出的表达式,然后利用双勾函数的单调性可求出的最大值.【详解】(1)设等差数列的公差为,则,解得,所以,数列的通项公式为;(2),令,则且,由双勾函数的单调性可知,函数在时单调递减,在时单调递增,当或时,取得最大值为.故答案为:;.【点睛】本题考查等差数列的通项公式、前项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,
14、是中档题16【解析】根据圆柱的体积为,以及圆锥的体积公式,计算即得.【详解】由题得,得.故答案为:【点睛】本题主要考查圆锥体的体积,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)【解析】(1)对函数求导,运用可求得的值,再由在直线上,可求得的值;(2)由已知可得恒成立,构造函数,对函数求导,讨论和0的大小关系,结合单调性求出最大值即可求得的范围.【详解】(1)由题得,因为在点与相切所以,(2)由得,令,只需,设(),当时,在时为增函数,所以,舍;当时,开口向上,对称轴为,所以在时为增函数,所以,舍;当时,二次函数开口向下,且,所以在时有一个零点,在时
15、,在时,当即时,在小于零,所以在时为减函数,所以,符合题意;当即时,在大于零,所以在时为增函数,所以,舍.综上所述:实数的取值范围为【点睛】本题考查函数的导数,利用导数求函数的单调区间及函数的最小值,属于中档题处理函数单调性问题时,注意利用导函数的正负,特别是已知单调性问题,转化为函数导数恒不小于零,或恒小于零,再分离参数求解,求函数最值时分析好单调性再求极值,从而求出函数最值18(1),;(2)当值为时,无盖三棱锥容器的容积最大.【解析】(1)由已知求得,求得三角形的面积,再由已知得到平面,代入三棱锥体积公式求的值;(2)由题意知,在等腰三角形中,则,写出三角形面积,求其平方导数的最值,则答
16、案可求【详解】解:(1)由题意,为等腰直角三角形,又,恰好是该零件的盖,则,由图甲知,则在图乙中,又,平面,平面,;(2)由题意知,在等腰三角形中,则,令,可得:当时,当,时,当时,有最大值由(1)知,平面,该三棱锥容积的最大值为,且当时,取得最大值,无盖三棱锥容器的容积最大答:当值为时,无盖三棱锥容器的容积最大【点睛】本题考查棱锥体积的求法,考查空间想象能力与思维能力,训练了利用导数求最值,属于中档题19();()证明见解析;()函数在有3个零点【解析】()求出导数,写出切线方程;()二次求导,判断单调递减,结合零点存在性定理,判断即可;(),数形结合得出结论【详解】解:(),故在点,处的切
17、线方程为,即;()证明:,故在递减,又,由零点存在性定理,存在唯一一个零点,当时,递增;当时,递减,故在只有唯一的一个极大值;()函数在有3个零点【点睛】本题主要考查利用导数求切线方程,考查零点存在性定理的应用,关键是能够通过导函数的单调性和零点存在定理确定导函数的零点个数,进而确定函数的单调性,属于难题20(1)(2)是定值,且定值为2【解析】(1)设出点坐标并代入椭圆方程,根据列方程,求得的值,结合求得的值,进而求得椭圆的方程.(2)设出直线的方程,联立直线的方程和椭圆方程,求得点的横坐标,联立直线的方程和椭圆方程,求得,由此化简求得为定值.【详解】(1)已知点在椭圆:()上,可设,即,又
18、,且,可得椭圆的方程为.(2)设直线的方程为:,则直线的方程为.联立直线与椭圆的方程可得:,由,可得,联立直线与椭圆的方程可得:,即,即.即为定值,且定值为2.【点睛】本小题主要考查本小题主要考查椭圆方程的求法,考查椭圆中的定值问题的求解,考查直线和椭圆的位置关系,考查运算求解能力,属于中档题.21();(),【解析】()由题意可得,的坐标,结合椭圆离心率,及隐含条件列式求得,的值,则椭圆方程可求;()设直线,求得的坐标,再设直线,求出点的坐标,写出的方程,联立与,可求出的坐标,由,可得关于的函数式,由单调性可得取值范围【详解】(),由,得,又,解得:,椭圆的标准方程为;()设直线,则与直线的交点,又,设直线,联立,消可得解得,联立,得,直线,联立,解得,函数在上单调递增,【点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查运算求解能力,意在考查学生对这些知识的理解掌握水平和分析推理计算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏扬州工业职业技术学院博士专项招聘16人笔试备考题库含答案详解
- 2025江苏扬州宝应县“乡村振兴青年人才”招聘67人笔试模拟试题及一套参考答案详解
- 2025江苏宿迁市泗阳县招聘乡村医生27人笔试备考试题及一套参考答案详解
- 2025广西来宾市招聘乡村振兴专员221人笔试备考题库及一套完整答案详解
- 2025年东营市公务员考试行测真题及答案详解1套
- 江苏省徐州市沛县2024-2025学年高一上学期第三次学情调研物理试题(解析版)
- 河南省驻马店市2024-2025学年高一上学期12月联考物理试题(解析版)
- 午夜钟声的春节故事
- 德克士的智能化生产系统
- 2025年二级建造师之二建矿业工程实务考试题库
- 围手术期低体温护理研究进展课件
- 高质量心肺复苏
- 教育家办学:中小学校长专业标准解读课件
- 锅炉防磨防爆总结汇报课件
- 茶叶企业营销课件
- 井巷工程课程设计-2篇
- 经口鼻腔吸痰操作评分标准
- 某印刷有限公司安全逃生平面图
- 口腔执业医师解剖生理学试题b1型题
- DB14T1049.3-2021 山西省用水定额 第3部分:服务业用水定额
- cass实体名称,图层,实体代码对照表
评论
0/150
提交评论