《直角三角形三边的关系(1)》参考课件_第1页
《直角三角形三边的关系(1)》参考课件_第2页
《直角三角形三边的关系(1)》参考课件_第3页
《直角三角形三边的关系(1)》参考课件_第4页
《直角三角形三边的关系(1)》参考课件_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、14.1 勾股定理直角三角形三边的关系(1)如图,强大的台风使得一根旗杆在离地面9米处断裂,旗杆顶部落在离旗杆底部12米处,旗杆折断之前有多高?9米12米挑战难关(图中每一格代表一平方厘米)观察左图:(1)正方形P的面积是 平方厘米。(2)正方形Q的面积是 平方厘米。(3)正方形R的面积是 平方厘米。121上面三个正方形的面积之间有什么关系?SP+SQ=SRRQPACBAC2+BC2=AB2等腰直角三角形ABC三边长度之间存在什么关系吗? 活动一 Sp=AC2 SQ=BC2 SR=AB2这说明在等腰直角三角形ABC中,两直角边的平方和等于斜边的平方那么,在一般的直角三角形中,两直角边的平方和是

2、否等于斜边的平方呢?想一想探究活动P的面积(单位长度)Q的面积(单位长度)R的面积(单位长度)图2图3P、Q、R面积关系直角三角形三边关系QPR图2QPR图3ABCABC916259413SP+SQ=SRBC2+AC2=AB2(每一小方格表示1平方厘米)QPR图1-3QPR图1-4把R看作是四个直角三角形的面积+小正方形面积。QPR图3QPR图4把R看作是大正方形面积减去四个直角三角形的面积。S正方形Rcababc证明:s总=4s1+s2又s总=c2赵爽弦图美国第二十任总统伽菲尔德的证法在数学史上被传为佳话 人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。

3、有趣的总统证法 S梯形= (a+b)(a+b) = (a2+b2)+ abS梯形 = c2 +2 ab = c2+ab 即:在RtABC中,C=90 c2 = a2 + b2伽菲尔德证法 剪四个完全一样的直角三角形,将他们拼成下图所示的正方形,用不同的方法表示大正方形的面积,也可以说明勾股定理的正确性 勾股定理(gou-gu theorem)如果直角三角形两直角边分别为a、b,斜边为c,那么即 直角三角形两直角边的平方和等于斜边的平方abc在西方又称毕达哥拉斯定理!abcc2=a2 + b2a2=c2 b2b2 =c2 a2结论变形直角三角形中,两直角边的平方和等于斜边的平方; 勾股定理史话

4、勾股定理从被发现到现在已有五千年的历史,远在公元前三千年的巴比伦人就知道和应用它了。我国古代也发现了这个定理,据周髀算经记载,商高(公元前1120年)关于勾股定理已有明确的认识,周髀算经中有商高答周公的话:“勾广三,股修四,径隅五。”同书中还有另一为学者陈子(公元前六七世纪)与荣方的一段对话:“求邪(斜)至日者,以日下为勾,日高为股,勾、股各自乘,并而开方除之,得邪(斜)至日”即 邪至日2=勾2+股2 陈子已不限于:三、四、五的特殊情形,而是推广到一般情形了。人们对勾股定理的认识,经历过一个从特殊到一般的过程,很难区分是谁最先发明的. 勾股定理曾引起很多人的兴趣,世界上对这个定理的证明方法很多

5、,1940年卢米斯收集了这个定理的370种证明,期中包括大画家达芬奇和美国总统詹姆士阿加菲尔德的证法。到目前为止,已有四百多种证法.毕达哥拉斯定理Pythagoras theorem毕达哥拉斯在国外,相传这个定理是公元前500多年时古希腊数学家毕达哥拉斯首先发现的。因此又称此定理为“毕达哥拉斯定理”。法国和比利时称它为“驴桥定理”,埃及称它为“埃及三角形”等。但他们发现的时间都比我国要迟得多。 如图,强大的台风使得一根旗杆在离地面9米处断裂,旗杆顶部落在离旗杆底部12米处,旗杆折断之前有多高?9米12米排除万难ABC例1、在RtABC中,已知B=90,AB=6,BC=8,求AC.解:根据勾股定

6、理,可得AB2+BC2=AC2所以课堂 练 习求出下列直角三角形中未知边的长度。6x2524x10b=2a=1c=?b=?c=17a=151、求下列2个三角形中的第三条边的长。试一试:比一比,看谁做的快 acbACB (1)若a = 24 ,b = 7, 则c = (2) 若a = 60 , c = 61 , 则 b = (3)若 a = ,b = , 则 c = (4)若 a = , b = , 则c = 如图,在RtABC中,c = 90325114动手操作在右图(书本109页做一做)的方格图中,用三角尺化出两条直角边分别为cm、12cm的直角三角形,然后用刻度尺量出斜边,并验证刚才得到的直角三角形三边的关系是否成立。(每一小格代表平方厘米)1252+122=13213ABCD7cm2如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为_cm2。49C160904040BA例2、 如图所示是一个长方形零件的平面图,尺寸如图所示, 求两孔中心A, B之间的距离.(单位:毫米)1、这节课你学到了什么知识?如果直角三角形两直角边分别为a,b,斜边为c,那

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论