考研数学暑期复习规划_第1页
考研数学暑期复习规划_第2页
考研数学暑期复习规划_第3页
考研数学暑期复习规划_第4页
考研数学暑期复习规划_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2014年考研数学暑期复习规划六七月考研数学复习步入强化阶段,这个阶段的重点是建立起三门学科(高等数学、线性代数、概率论与数理统计)的知识体系和框架结构,对三科分别进行综合性的训练,进而提高解题能力和做题速度。同时,这个阶段也是数学复习起步晚或是由于某些原因没有跟上复习进度的学员完成基础复习的最后阶段。否则,进入九月份之后,专业课和政治复习的强度都会加大,数学复习的时间必定会受到严重影响。跨考考研数学教研室为同学们详细整理了一份暑期复习计划表,同学们可参照进度知识点复习。高等数学:用书:2014年考研数学二阶高等数学讲义2014年考研数学核心题型1000题学习内容:依据考试大纲及历年真题介绍考

2、研数学主要知识点,归纳总结命题方向和常见的解题思想。学习目标:全面的掌握考点,能够准确的区分重点和难点,能够灵活运用所学的知识,解决中等难度的题目,提高解题的速度和准确度。周数 学习时间 学习章节 学习知识点 重难点 第一周 8小时 模块一 极限(计算) (1)极限的运算法则:四则运算; (2)等价无穷小替换; (3)洛必达法则 (4)泰勒公式 (5)项和的极限 (6)单调有界收敛定理 1、各种极限计算方法的组合 2、泰勒公式的应用 4小时 模块二 极限(运用) (1)函数的连续性与间断点的分类 (2)函数的可导性与可微性 (3)渐近线的计算 (4)多元函数微分学的概念 1、多元函数的连续、可

3、微 6小时 模块三 导数(计算) (1)复合函数求导法则 (2)反函数求导 (3)变上限积分求导 (4)偏导数的计算 1、变上限积分求导 第二周 6小时 模块四 导数(运用) (1)切线与法线 (2)单调性与凹凸性 (3)极值与拐点 (4)多元函数的极值与条件极值 (5)切线与切平面(*数学一) 1、不等式的证明 2、极值与拐点 10小时 模块五 不定积分 (1)有理函数的积分 (2)可化为有理函数的简单函数 (3)根式的处理 (4)分部积分法的运用 1、根据函数类型选择合适的积分方法 2、分部积分法 6小时 模块六 定积分(计算) (1)定积分的性质 (2)利用牛顿-莱布尼兹公式计算定积分

4、(3)对称区间上的积分 (4)分部积分法的运用 (5)反常积分的计算 1、对称区间上的积分 2、分部积分法 第三周 8小时 模块七 定积分(应用) (1)平面图形的面积; (2)简单几何体的体积 (3)平面曲线的弧长 (4)旋转曲面的面积 (5)物理应用:变力沿曲线所作的功、液体压力、引力、质心(*数学一、二) 1、微元法 2、各种计算公式的推导与记忆 6小时 模块八 中值定理证明 (1)罗尔定理 (2)拉格朗日中值定理 (3)柯西中值定理 (4)积分中值定理 1、辅助函数的构造 2、柯西中值定理的运用 6小时 模块九 二重积分 (1)利用直角坐标计算二重积分; (2)利用极坐标计算二重积分;

5、 (3)利用对称性计算二重积分。 1、极坐标 2、对称性 2小时 模块十 空间解析几何 (1)空间直线与平面 (2)旋转曲面、柱面、投影 (3)常见的二次曲面 1、各种曲面、曲线方程的计算 第四周 12小时 模块十一 多元函数积分学 (1)三重积分的计算方法; (2)对弧长的曲线积分的计算方法; (3)对坐标的曲线积分的计算方法; (4)格林公式及其应用,积分与路径无关的条件,二元函数的全微分; (5)对面积的曲面积分的计算方法; (6)对坐标的曲面积分的计算方法; (7)高斯公式及其应用; (8)斯托克斯公式及其应用; 1、格林公式、积分与路径无关的条件 2、高斯公式 4小时 模块十二 微分

6、方程 (1)基本方程类型解法回顾 (2)微分方程的运用 1、方程类型的判别 2、根据问题的实际背景列方程 4小时 模块十三 常数项级数 (1)正项级数判别法; (2)一般项级数的绝对收敛与条件收敛; (3)交错级数的莱布尼兹判别法。 1、正项级数判别法 2、级数收敛性的考查 4小时 模块十四 幂级数 (1)幂级数的基本概念及性质; (2)幂级数的收敛半径与收敛域; (3)逐项求和与逐项积分定理; (4)幂级数的求和与展开; (5)傅里叶级数(*数学一) 1、幂级数的求和与展开 2. 线性代数:用书:2014年考研数学二阶线性代数讲义2014年考研数学核心题型1000题学习内容:依据考试大纲及历

7、年真题介绍考研数学主要知识点,归纳总结命题方向和常见的解题思想。学习目标:全面的掌握考点,能够准确的区分重点和难点,能够灵活运用所学的知识,解决中等难度的题目,提高解题的速度和准确度。周数 学习时间 学习章节 学习知识点 重难点 第五周 3小时 模块一 行列式(基本内容) (1)行列式的定义 (2)行列式的性质及展开定理; (3)各种数值型行列式的计算。 1、高阶行列式的计算 2小时 模块二 行列式(综合应用) (1)抽象型行列式的计算; (2)行列式在其它章节中的应用汇总。 1、抽象行列式的计算 2、各种与行列式相关的概念、公式、定理 2小时 模块三 矩阵的概念及运算 (1)矩阵的定义 (2

8、)矩阵的运算 (3)常用的运算法则 1、与矩阵乘法相关的运算法则 4小时 模块四 逆矩阵与初等矩阵 (1)逆矩阵的计算方法 (2)伴随矩阵 (3)矩阵可逆性的判断 (4)初等矩阵与初等变换 1、与伴随矩阵相关的讨论与计算 2、矩阵可逆性的讨论 6小时 模块五 向量 (1)基本概念 (2)常用性质 (3)证明向量组线性无关 (4)向量空间(*数学一) 1、线性表出与线性相关性的讨论与正面 2、证明向量组线性无关 6小时 模块六 秩 (1)基本定义 (2)常用公式 (3)基本思想方法 1、秩的基本概念的理解 2、常见公式的归纳总结 3、与秩相关的基本思想方法的掌握 第六周 6小时 模块七 线性方程

9、组 (1)解的判定 (2)解的结构 1、判断线性方程组解的存在性与唯一性 2、基础解系的概念及相关计算与证明 4小时 模块八 特征值与特征向量 (1)特征值与特征向量的定义 (2)特征值与特征向量的计算方法 (3)特征值与特征向量的常用性质 1、特征值与特征向量的常用性质、公式 4小时 模块九 相似对角化 矩阵相似可对角化的条件; 相似对角化相关计算; 实对称矩阵及其正交相似对角化。 1、矩阵可相似对角化的条件 2、实对称矩阵的性质 3、正交相似对角化 4小时 模块十 二次型 (1)二次型概念、合同标准形的定义及求法; (2)惯性指数、惯性定理及规范形; (3)正定二次型的定义及判定。 1、惯

10、性指数与惯性定理 2、矩阵正定性的判定 3. 概率论与数理统计:用书:2014年考研数学二阶线性代数讲义2014年考研数学核心题型1000题学习内容:依据考试大纲及历年真题介绍考研数学主要知识点,归纳总结命题方向和常见的解题思想。学习目标:全面的掌握考点,能够准确的区分重点和难点,能够灵活运用所学的知识,解决中等难度的题目,提高解题的速度和准确度。周数 学习时间 学习章节 学习知识点 重难点 第七周 1小时 模块一 随机事件与概率 (1)随机事件的关系与运算; (2)简单概型; (3)概率的公理化定义; (4)概率的性质; (5)条件概率与独立性。 1、条件概率与独立性 2小时 模块二 五大公

11、式 (1)加法公式与减法公式; (2)乘法公式; (3)全概率公式与贝叶斯公式。 1、全概率公式与贝叶斯公式 3小时 模块三 随机变量及其分布 (1)随机变量的分布函数; (2)离散型随机变量及其分布律; (3)连续型随机变量及其概率密度。 1、分布函数的定义 3小时 模块四 常见分布 (1)常见的离散型随机变量:0-1分布,二项分布,几何分布,泊松分布 (2)常见的连续型随机变量:均匀分布,指数分布,正态分布 1、二项分布、几何分布的实际背景 2、正态分布 4小时 模块五 多维随机变量 (1)多维随机变量的联合分布函数; (3)多维离散型随机变量的联合分布律; (4)多维连续型随机变量的联合

12、概率密度; (5)常见的多维随机变量。 1、多维随机变量的联合分布函数、分布律、概率密度的定义和基本性质 6小时 模块六 边缘分布与条件分布 (1)边缘分布的定义及计算方法 (2)条件分布的定义计算方法 1、边缘分布及条件分布的计算 第八周 2小时 模块七 独立性 (1)随机变量独立的定义及判断方法; (2)独立的随机变量的性质。 1、随机变量独立性的判别 4小时 模块八 随机变量函数的分布 (1)一维随机变量函数的分布 (2)二维随机变量函数的分布 1、分布函数法 3小时 模块九 数字特征 (1)随机变量的期望; (2)随机变量函数的期望; (3)随机变量的方差; (4)协方差与相关系数。 1、协方差与相关系数 3小时 模块十 数字特征的公式 (1)期望、方差及协方差的常用性质; (2)常见分布的期望与方差。 1、数字特征的常用公式 2小时 模块十一 不相关性 (1)相关系数的性质; (2)随机变量的不相关性。 1、相关系数的形式 2、独立性和不相关性的关系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论