




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、CS 345Data MiningOnline algorithmsSearch advertising共三十七页Online algorithmsClassic model of algorithmsYou get to see the entire input, then compute some function of itIn this context, “offline algorithm”Online algorithmYou get to see the input one piece at a time, and need to make irrevocable decisio
2、ns along the waySimilar to data stream models共三十七页Example: Bipartite matching1234abcdGirlsBoys共三十七页Example: Bipartite matching1234abcdM = (1,a),(2,b),(3,d) is a matchingCardinality of matching = |M| = 3GirlsBoys共三十七页Example: Bipartite matching1234abcdGirlsBoysM = (1,c),(2,b),(3,d),(4,a) is a perfect
3、 matching共三十七页Matching AlgorithmProblem: Find a maximum-cardinality matching for a given bipartite graphA perfect one if it existsThere is a polynomial-time offline algorithm (Hopcroft and Karp 1973)But what if we dont have the entire graph upfront?共三十七页Online problemInitially, we are given the set
4、BoysIn each round, one girls choices are revealedAt that time, we have to decide to either:Pair the girl with a boyDont pair the girl with any boyExample of application: assigning tasks to servers共三十七页Online problem1234abcd(1,a)(2,b)(3,d)共三十七页Greedy algorithmPair the new girl with any eligible boyIf
5、 there is none, dont pair girlHow good is the algorithm?共三十七页Competitive RatioFor input I, suppose greedy produces matching Mgreedy while an optimal matching is MoptCompetitive ratio = minall possible inputs I (|Mgreedy|/|Mopt|)共三十七页Analyzing the greedy algorithmConsider the set G of girls matched i
6、n Mopt but not in MgreedyThen it must be the case that every boy adjacent to girls in G is already matched in MgreedyThere must be at least |G| such boysOtherwise the optimal algorithm could not have matched all the G girlsTherefore |Mgreedy| |G| = |Mopt - Mgreedy|Mgreedy|/|Mopt| 1/2共三十七页Worst-case
7、scenario1234abc(1,a)(2,b)d共三十七页History of web advertisingBanner ads (1995-2001)Initial form of web advertisingPopular websites charged X$ for every 1000 “impressions” of adCalled “CPM” rateModeled similar to TV, magazine adsUntargeted to demographically tagetedLow clickthrough rateslow ROI for adver
8、tisers共三十七页Performance-based advertisingIntroduced by Overture around 2000Advertisers “bid” on search keywordsWhen someone searches for that keyword, the highest bidders ad is shownAdvertiser is charged only if the ad is clicked onSimilar model adopted by Google with some changes around 2002Called “
9、Adwords”共三十七页Ads vs. search results共三十七页Web 2.0Performance-based advertising works!Multi-billion-dollar industryInteresting problemsWhat ads to show for a search?If Im an advertiser, which search terms should I bid on and how much to bid?共三十七页Adwords problemA stream of queries arrives at the search
10、engineq1, q2,Several advertisers bid on each queryWhen query qi arrives, search engine must pick a subset of advertisers whose ads are shownGoal: maximize search engines revenuesClearly we need an online algorithm!共三十七页Greedy algorithmSimplest algorithm is greedyIts easy to see that the greedy algor
11、ithm is actually optimal!共三十七页Complications (1)Each ad has a different likelihood of being clickedAdvertiser 1 bids $2, click probability = 0.1Advertiser 2 bids $1, click probability = 0.5Clickthrough rate measured historicallySimple solutionInstead of raw bids, use the “expected revenue per click”共
12、三十七页The Adwords InnovationAdvertiserBidCTRBid * CTRABC$1.00$0.75$0.501%2%2.5%1 cent1.5 cents1.125 cents共三十七页The Adwords InnovationAdvertiserBidCTRBid * CTRABC$1.00$0.75$0.501%2%2.5%1 cent1.5 cents1.125 cents共三十七页Complications (2)Each advertiser has a limited budgetSearch engine guarantees that the a
13、dvertiser will not be charged more than their daily budget共三十七页Simplified model (for now)Assume all bids are 0 or 1Each advertiser has the same budget BOne advertiser per queryLets try the greedy algorithmArbitrarily pick an eligible advertiser for each keyword共三十七页Bad scenario for greedyTwo adverti
14、sers A and BA bids on query x, B bids on x and yBoth have budgets of $4Query stream: xxxxyyyyWorst case greedy choice: BBBB_Optimal: AAAABBBBCompetitive ratio = Simple analysis shows this is the worst case共三十七页BALANCE algorithm MSVVMehta, Saberi, Vazirani, and VaziraniFor each query, pick the advert
15、iser with the largest unspent budgetBreak ties arbitrarily共三十七页Example: BALANCETwo advertisers A and BA bids on query x, B bids on x and yBoth have budgets of $4Query stream: xxxxyyyyBALANCE choice: ABABBB_Optimal: AAAABBBBCompetitive ratio = 共三十七页Analyzing BALANCEConsider simple case: two advertise
16、rs, A1 and A2, each with budget B (assume B 1)Assume optimal solution exhausts both advertisers budgetsBALANCE must exhaust at least one advertisers budgetIf not, we can allocate more queriesAssume BALANCE exhausts A2s budget共三十七页Analyzing BalanceA1A2BxyBA1A2xOpt revenue = 2BBalance revenue = 2B-x =
17、 B+yWe have y xBalance revenue is minimum for x=y=B/2Minimum Balance revenue = 3B/2Competitive Ratio = 3/4Queries allocated to A1 in optimal solutionQueries allocated to A2 in optimal solution共三十七页General ResultIn the general case, worst competitive ratio of BALANCE is 11/e = approx. 0.63Interesting
18、ly, no online algorithm has a better competitive ratioWont go through the details here, but lets see the worst case that gives this ratio共三十七页Worst case for BALANCEN advertisers, each with budget B N 1NB queries appear in N rounds of B queries eachRound 1 queries: bidders A1, A2, , ANRound 2 queries
19、: bidders A2, A3, , ANRound i queries: bidders Ai, , ANOptimum allocation: allocate round i queries to AiOptimum revenue NB共三十七页BALANCE allocationA1A2A3AN-1ANB/NB/(N-1)B/(N-2)After k rounds, sum of allocations to each of bins Ak,AN is Sk = Sk+1 = = SN = 1 1 kB/(N-i+1)If we find the smallest k such t
20、hat Sk B, then after k roundswe cannot allocate any queries to any advertiser共三十七页BALANCE analysisB/1 B/2 B/3 B/(N-k+1) B/(N-1) B/NS1S2Sk = B 1/1 1/2 1/3 1/(N-k+1) 1/(N-1) 1/NS1S2Sk = 1 共三十七页BALANCE analysisFact: Hn = 1 i n1/i = approx. log(n) for large nResult due to Euler1/1 1/2 1/3 1/(N-k+1) 1/(N-1) 1/NSk = 1 log(N)log(N)-1Sk = 1 implies HN-k = log(N)-1 = log(N/e)N-k = N/ek = N(1-1/e)共三十七页BALANCE analysisSo after the first N(1-1/e) rounds, we cannot allocate a query to any advertiserRevenue = BN(1-1/e)Competitive ratio = 1-1/e共三十七页General versi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年河北邯郸成安县事业单位招聘工作人员255名笔试备考题库及一套完整答案详解
- 2025广东选拔汕头市市级乡村振兴人才80人笔试备考试题及一套完整答案详解
- 2025河北邯郸市峰峰矿区招聘农村党务(村务)工作者157人笔试备考试题带答案详解
- 2025年包头市公务员考试行测真题完整答案详解
- 2025年安徽省合肥市第三十八中学教育集团中考三模化学试卷(含答案)
- 统编版2024-2025学年一年级下学期期末语文模拟试卷(含答案)
- 江西省上饶市弋阳县2024-2025学年高二上学期12月月考物理试题(解析版)
- 浙江省“桐·浦·富·兴”教研联盟2024-2025学年高二下学期5月调研测试 数学 PDF版含答案
- 团队协作在房地产项目管理中的重要性
- 元旦的梦想淡蓝故事课件
- 中国可穿戴医疗设备项目创业计划书
- CJ/T 345-2010生活饮用水净水厂用煤质活性炭
- 国开电大【管理英语3单元自测1-8答案】+【管理英语4形考任务单元自测1-8答案】
- GB/T 45630-2025系统与软件工程架构描述
- 2025年全国司法警察学院考试试卷及答案
- 2025年环境监测技术考试试卷及答案
- 2025-2030中国液体肥料行业市场发展分析及发展趋势与投资研究报告
- 2025年上半年高级软件水平考试系统架构设计师(案例分析)真题及解析
- 2025年心理咨询师考试试题及答案详解
- 2025年河北省公需课《深入学习贯彻关于网络安全的重要论述全面加强网络安全保障体系和能力建设》答案
- 贵州国企招聘2024贵州贵安发展集团有限公司招聘68人笔试参考题库附带答案详解
评论
0/150
提交评论