版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、CS 345Data MiningOnline algorithmsSearch advertising共三十七页Online algorithmsClassic model of algorithmsYou get to see the entire input, then compute some function of itIn this context, “offline algorithm”Online algorithmYou get to see the input one piece at a time, and need to make irrevocable decisio
2、ns along the waySimilar to data stream models共三十七页Example: Bipartite matching1234abcdGirlsBoys共三十七页Example: Bipartite matching1234abcdM = (1,a),(2,b),(3,d) is a matchingCardinality of matching = |M| = 3GirlsBoys共三十七页Example: Bipartite matching1234abcdGirlsBoysM = (1,c),(2,b),(3,d),(4,a) is a perfect
3、 matching共三十七页Matching AlgorithmProblem: Find a maximum-cardinality matching for a given bipartite graphA perfect one if it existsThere is a polynomial-time offline algorithm (Hopcroft and Karp 1973)But what if we dont have the entire graph upfront?共三十七页Online problemInitially, we are given the set
4、BoysIn each round, one girls choices are revealedAt that time, we have to decide to either:Pair the girl with a boyDont pair the girl with any boyExample of application: assigning tasks to servers共三十七页Online problem1234abcd(1,a)(2,b)(3,d)共三十七页Greedy algorithmPair the new girl with any eligible boyIf
5、 there is none, dont pair girlHow good is the algorithm?共三十七页Competitive RatioFor input I, suppose greedy produces matching Mgreedy while an optimal matching is MoptCompetitive ratio = minall possible inputs I (|Mgreedy|/|Mopt|)共三十七页Analyzing the greedy algorithmConsider the set G of girls matched i
6、n Mopt but not in MgreedyThen it must be the case that every boy adjacent to girls in G is already matched in MgreedyThere must be at least |G| such boysOtherwise the optimal algorithm could not have matched all the G girlsTherefore |Mgreedy| |G| = |Mopt - Mgreedy|Mgreedy|/|Mopt| 1/2共三十七页Worst-case
7、scenario1234abc(1,a)(2,b)d共三十七页History of web advertisingBanner ads (1995-2001)Initial form of web advertisingPopular websites charged X$ for every 1000 “impressions” of adCalled “CPM” rateModeled similar to TV, magazine adsUntargeted to demographically tagetedLow clickthrough rateslow ROI for adver
8、tisers共三十七页Performance-based advertisingIntroduced by Overture around 2000Advertisers “bid” on search keywordsWhen someone searches for that keyword, the highest bidders ad is shownAdvertiser is charged only if the ad is clicked onSimilar model adopted by Google with some changes around 2002Called “
9、Adwords”共三十七页Ads vs. search results共三十七页Web 2.0Performance-based advertising works!Multi-billion-dollar industryInteresting problemsWhat ads to show for a search?If Im an advertiser, which search terms should I bid on and how much to bid?共三十七页Adwords problemA stream of queries arrives at the search
10、engineq1, q2,Several advertisers bid on each queryWhen query qi arrives, search engine must pick a subset of advertisers whose ads are shownGoal: maximize search engines revenuesClearly we need an online algorithm!共三十七页Greedy algorithmSimplest algorithm is greedyIts easy to see that the greedy algor
11、ithm is actually optimal!共三十七页Complications (1)Each ad has a different likelihood of being clickedAdvertiser 1 bids $2, click probability = 0.1Advertiser 2 bids $1, click probability = 0.5Clickthrough rate measured historicallySimple solutionInstead of raw bids, use the “expected revenue per click”共
12、三十七页The Adwords InnovationAdvertiserBidCTRBid * CTRABC$1.00$0.75$0.501%2%2.5%1 cent1.5 cents1.125 cents共三十七页The Adwords InnovationAdvertiserBidCTRBid * CTRABC$1.00$0.75$0.501%2%2.5%1 cent1.5 cents1.125 cents共三十七页Complications (2)Each advertiser has a limited budgetSearch engine guarantees that the a
13、dvertiser will not be charged more than their daily budget共三十七页Simplified model (for now)Assume all bids are 0 or 1Each advertiser has the same budget BOne advertiser per queryLets try the greedy algorithmArbitrarily pick an eligible advertiser for each keyword共三十七页Bad scenario for greedyTwo adverti
14、sers A and BA bids on query x, B bids on x and yBoth have budgets of $4Query stream: xxxxyyyyWorst case greedy choice: BBBB_Optimal: AAAABBBBCompetitive ratio = Simple analysis shows this is the worst case共三十七页BALANCE algorithm MSVVMehta, Saberi, Vazirani, and VaziraniFor each query, pick the advert
15、iser with the largest unspent budgetBreak ties arbitrarily共三十七页Example: BALANCETwo advertisers A and BA bids on query x, B bids on x and yBoth have budgets of $4Query stream: xxxxyyyyBALANCE choice: ABABBB_Optimal: AAAABBBBCompetitive ratio = 共三十七页Analyzing BALANCEConsider simple case: two advertise
16、rs, A1 and A2, each with budget B (assume B 1)Assume optimal solution exhausts both advertisers budgetsBALANCE must exhaust at least one advertisers budgetIf not, we can allocate more queriesAssume BALANCE exhausts A2s budget共三十七页Analyzing BalanceA1A2BxyBA1A2xOpt revenue = 2BBalance revenue = 2B-x =
17、 B+yWe have y xBalance revenue is minimum for x=y=B/2Minimum Balance revenue = 3B/2Competitive Ratio = 3/4Queries allocated to A1 in optimal solutionQueries allocated to A2 in optimal solution共三十七页General ResultIn the general case, worst competitive ratio of BALANCE is 11/e = approx. 0.63Interesting
18、ly, no online algorithm has a better competitive ratioWont go through the details here, but lets see the worst case that gives this ratio共三十七页Worst case for BALANCEN advertisers, each with budget B N 1NB queries appear in N rounds of B queries eachRound 1 queries: bidders A1, A2, , ANRound 2 queries
19、: bidders A2, A3, , ANRound i queries: bidders Ai, , ANOptimum allocation: allocate round i queries to AiOptimum revenue NB共三十七页BALANCE allocationA1A2A3AN-1ANB/NB/(N-1)B/(N-2)After k rounds, sum of allocations to each of bins Ak,AN is Sk = Sk+1 = = SN = 1 1 kB/(N-i+1)If we find the smallest k such t
20、hat Sk B, then after k roundswe cannot allocate any queries to any advertiser共三十七页BALANCE analysisB/1 B/2 B/3 B/(N-k+1) B/(N-1) B/NS1S2Sk = B 1/1 1/2 1/3 1/(N-k+1) 1/(N-1) 1/NS1S2Sk = 1 共三十七页BALANCE analysisFact: Hn = 1 i n1/i = approx. log(n) for large nResult due to Euler1/1 1/2 1/3 1/(N-k+1) 1/(N-1) 1/NSk = 1 log(N)log(N)-1Sk = 1 implies HN-k = log(N)-1 = log(N/e)N-k = N/ek = N(1-1/e)共三十七页BALANCE analysisSo after the first N(1-1/e) rounds, we cannot allocate a query to any advertiserRevenue = BN(1-1/e)Competitive ratio = 1-1/e共三十七页General versi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 5G通信设备制造行业市场调研分析报告
- 云物流服务行业市场调研分析报告
- 建筑风能利用行业市场调研分析报告
- 宠物用首饰产品供应链分析
- 牙科用贵金属合金商业机会挖掘与战略布局策略研究报告
- 假发粘贴胶水产品供应链分析
- 医用拐杖产品供应链分析
- 卸妆霜产品供应链分析
- 制饮料用机器人出租行业经营分析报告
- 垫席产品供应链分析
- 杭州本级公共租赁住房资格续审申请表Ⅴ
- 建筑垃圾外运施工方案
- 上海市青浦区上海五浦汇实验学校 2024-2025学年上学期六年级数学期中试卷(无答案)
- 2024年扩大“司机之家”覆盖范围工作策划方案
- 课内阅读(专项训练)-2024-2025学年统编版语文四年级上册
- 苏教版数学五年级上册《解决问题的策略》
- 2024光伏电站质量验收项目划分表(分部分项)
- 2024中国东方航空技术限公司全球校园招聘高频考题难、易错点模拟试题(共500题)附带答案详解
- 2024年人教版八年级数学(上册)期中试卷及答案(各版本)
- 消化系统常见疾病课件(完美版)
- 浙江省2024年性选拔干部工作历年(高频重点复习提升训练)共500题附带答案详解
评论
0/150
提交评论