




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,能判定EBAC的条件是( )AC=ABEBA=EBDCA=ABEDC=ABC2如图,已知二次函数y=ax2+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:ab0;ab;sin=;不等式kxax2+bx的解集
2、是0 x1其中正确的是()ABCD3一元二次方程mx2+mx0有两个相等实数根,则m的值为()A0B0或2C2D24下列计算正确的是Aa2a22a4 B(a2)3a6 C3a26a23a2 D(a2)2a245在RtABC中,C=90,如果AC=2,cosA=,那么AB的长是()A3BCD6下列运算正确的是()A5abab4Ba6a2a4CD(a2b)3a5b37已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sinAOB=1213反比例函数y=kx在第一象限图象经过点A,与BC交于点FSAOF=392,则k=()A15B13C12D58滴滴快车是一种便捷的出行工具,计价规则如下表:计费
3、项目里程费时长费远途费单价1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )A10分钟B13分钟C15分钟D19分钟9已知关于x的方程x24x+c+1=0有两个相等的实数根,则常数c的值为( )A1B0C1D310如果(,均为非零向量),那么下列结论错误的是()A/B-2=
4、0C=D11计算(5)(3)的结果等于()A8 B8 C2 D212如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是 ( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13计算:=_.14关于x的不等式组的整数解有4个,那么a的取值范围( )A4a6B4a6C4a6D2a415如图,将量角器和含30角的一块直角三角板紧靠着放在同一平面内,使三角板的0cm刻度线与量角器的0线在同一直线上,且直径DC是直角边BC的两倍,过点A作量角器圆弧所在圆的切线,切点为E,则点E在量角器上所对应的度数是_.16用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该
5、圆锥的高为 17如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是_18如图,AB是O的直径,点C在AB的延长线上,CD与O相切于点D,若C=20,则CDA= 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且ECF45,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF,GH(1)填空:AHC ACG;(填“”或“”或“”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AEm,AGH的面积S有变
6、化吗?如果变化请求出S与m的函数关系式;如果不变化,请求出定值请直接写出使CGH是等腰三角形的m值20(6分)如图,AB是O的直径,点C为O上一点,CN为O的切线,OMAB于点O,分别交AC、CN于D、M两点求证:MD=MC;若O的半径为5,AC=4,求MC的长21(6分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元今年年初,“共享单车”试点投放在某市中心城区正式启动投放A,B两种款型的单车共100辆,总价值36800元试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广
7、大市民的认可,该市决定将此项公益活动在整个城区全面铺开按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?22(8分)如图,四边形ABCD内接于O,BD是O的直径,AECD于点E,DA平分BDE(1)求证:AE是O的切线;(2)如果AB=4,AE=2,求O的半径23(8分)列方程解应用题:某商场用8万元购进一批新款衬衫,上架后很快销售一空,商场又紧急购进第二批这种衬衫,数量是第一次的2倍,但进价涨了4元/件,结果共用去17.6万元该商场第一批购进衬衫多少件?商场销售这种衬衫时,每件定价都是58元,剩至150件时
8、按八折出售,全部售完售完这两批衬衫,商场共盈利多少元?24(10分)先化简,再求值:(x2y)2+(x+y)(x4y),其中x5,y25(10分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁现在任意取出一把钥匙去开任意一把锁(1)请用列表或画树状图的方法表示出上述试验所有可能结果; (2)求一次打开锁的概率26(12分)试探究:小张在数学实践活动中,画了一个ABC,ACB90,BC1,AC2,再以点B为圆心,BC为半径画弧交AB于点D,然后以A为圆心,AD长为半径画弧交AC于点E,如图1,则AE ;此时小张发现AE2ACEC,请同学们验证小张的
9、发现是否正确拓展延伸:小张利用图1中的线段AC及点E,构造AEEFFC,连接AF,得到图2,试完成以下问题:(1)求证:ACFFCE;(2)求A的度数;(3)求cosA的值;应用迁移:利用上面的结论,求半径为2的圆内接正十边形的边长27(12分)解方程:-=1参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线【详解】A、C=ABE不能判断出EBAC,故本选项错误; B、A=EBD不能判断出EBAC,故
10、本选项错误;C、A=ABE,根据内错角相等,两直线平行,可以得出EBAC,故本选项正确; D、C=ABC只能判断出AB=AC,不能判断出EBAC,故本选项错误故选C【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行2、B【解析】根据抛物线图象性质确定a、b符号,把点A代入y=ax2+bx得到a与b数量关系,代入,不等式kxax2+bx的解集可以转化为函数图象的高低关系【详解】解:根据图象抛物线开口向上,对称轴在y轴右侧,则a0,b0,则错误将A(1,2)代入y=ax2+bx,则2=9
11、a+1bb=,ab=a()=4a-,故正确;由正弦定义sin=,则正确;不等式kxax2+bx从函数图象上可视为抛物线图象不低于直线y=kx的图象则满足条件x范围为x1或x0,则错误故答案为:B【点睛】二次函数的图像,sin公式,不等式的解集3、C【解析】由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值【详解】一元二次方程mx1+mx0有两个相等实数根,m14m()m1+1m0,解得:m0或m1,经检验m0不合题意,则m1故选C【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的
12、判别式的值小于0,方程没有实数根4、B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.【详解】A. a2a2a4 ,故A选项错误;B. (a2)3a6 ,正确;C. 3a26a2-3a2 ,故C选项错误;D. (a2)2a24a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.5、A【解析】根据锐角三角函数的性质,可知cosA=,然后根据AC=2,解方程可求得AB=3.故选A.点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=,然后带入数
13、值即可求解.6、B【解析】根据同底数幂的除法,合并同类项,积的乘方的运算法则进行逐一运算即可【详解】解:A、5ab=4ab,此选项运算错误,B、a6a2=a4,此选项运算正确,C、,选项运算错误,D、(a2b)3=a6b3,此选项运算错误,故选B【点睛】此题考查了同底数幂的除法,合并同类项,积的乘方,熟练掌握运算法则是解本题的关键7、A【解析】过点A作AMx轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出SAOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值【详解】过点A作AMx轴于点M,如图所示设OA
14、=a=OB,则,在RtOAM中,AMO=90,OA=a,sinAOB=1213,AM=OAsinAOB=1213a,OM=513a,点A的坐标为(513a,1213a)四边形OACB是菱形,SAOF=392,12OBAM=392,即12a1213a=39,解得a=132,而a0,a=132,即A(52,6),点A在反比例函数y=kx的图象上,k=526=1故选A【解答】解:【点评】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是利用SAOF=12S菱形OBCA8、D【解析】设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费
15、,建立方程求解.【详解】设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.86+0.3x=1.88.5+0.3y+0.8(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案为D.【点睛】本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.9、D【解析】分析:由于方程x24x+c+1=0有两个相等的实数根,所以 =b24ac=0,可得关于c的一元一次方程,然后解方程求出c的值.详解:由题意得,(-4)2-4(c+1)=0,c=3.故选D.点睛:本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式 =b24ac:当0时
16、,一元二次方程有两个不相等的实数根;当=0时,一元二次方程有两个相等的实数根;当0时,一元二次方程没有实数根.10、B【解析】试题解析:向量最后的差应该还是向量. 故错误.故选B.11、C【解析】分析:减去一个数,等于加上这个数的相反数 依此计算即可求解详解:(-5)-(-3)=-1故选:C点睛:考查了有理数的减法,方法指引:在进行减法运算时,首先弄清减数的符号; 将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数)12、A【解析】观察所给的几何体,根据三视图的定义即可解答.【详解】左视图有2列,每列小正方形数目分别为2,1故选A【点睛】本
17、题考查了三视图的知识,左视图是从物体的左面看得到的视图二、填空题:(本大题共6个小题,每小题4分,共24分)13、2【解析】利用平方差公式求解,即可求得答案【详解】=()2-()2=5-3=2.故答案为2.【点睛】此题考查了二次根式的乘除运算此题难度不大,注意掌握平方差公式的应用14、C【解析】分析:先根据一元一次不等式组解出x的取值,再根据不等式组的整数解有4个,求出实数a的取值范围详解: 解不等式,得 解不等式,得 原不等式组的解集为 只有4个整数解,整数解为: 故选C.点睛:考查解一元一次不等式组的整数解,分别解不等式,写出不等式的解题,根据不等式整数解的个数,确定a的取值范围.15、6
18、0.【解析】首先设半圆的圆心为O,连接OE,OA,由题意易得AC是线段OB的垂直平分线,即可求得AOCABC60,又由AE是切线,易证得RtAOERtAOC,继而求得AOE的度数,则可求得答案【详解】设半圆的圆心为O,连接OE,OA,CD2OC2BC,OCBC,ACB90,即ACOB,OABA,AOCABC,BAC30,AOCABC60,AE是切线,AEO90,AEOACO90,在RtAOE和RtAOC中,RtAOERtAOC(HL),AOEAOC60,EOD180AOEAOC60,点E所对应的量角器上的刻度数是60,故答案为:60.【点睛】本题考查了切线的性质、全等三角形的判定与性质以及垂直
19、平分线的性质,解题的关键是掌握辅助线的作法,注意掌握数形结合思想的应用16、53【解析】试题分析:根据图形可知圆锥的侧面展开图的弧长为2102=10(cm),因此圆锥的底面半径为102=5(cm),因此圆锥的高为:102-52=53(cm)考点:圆锥的计算17、【解析】试题解析:如图,连接OM交AB于点C,连接OA、OB,由题意知,OMAB,且OC=MC=1,在RTAOC中,OA=2,OC=1,cosAOC=,AC=AOC=60,AB=2AC=2,AOB=2AOC=120,则S弓形ABM=S扇形OAB-SAOB=,S阴影=S半圆-2S弓形ABM=22-2()=2故答案为218、1【解析】连接O
20、D,根据圆的切线定理和等腰三角形的性质可得出答案.【详解】连接OD,则ODC=90,COD=70,OA=OD,ODA=A=COD=35,CDA=CDO+ODA=90+35=1,故答案为1考点:切线的性质三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)=;(2)结论:AC2AGAH理由见解析;(3)AGH的面积不变m的值为或2或84.【解析】(1)证明DAC=AHC+ACH=43,ACH+ACG=43,即可推出AHC=ACG;(2)结论:AC2=AGAH只要证明AHCACG即可解决问题;(3)AGH的面积不变理由三角形的面积公式计算即可;分三种情形分别
21、求解即可解决问题.【详解】(1)四边形ABCD是正方形,ABCBCDDA4,DDAB90DACBAC43,AC,DACAHC+ACH43,ACH+ACG43,AHCACG故答案为(2)结论:AC2AGAH理由:AHCACG,CAHCAG133,AHCACG,AC2AGAH(3)AGH的面积不变理由:SAGHAHAGAC2(4)21AGH的面积为1如图1中,当GCGH时,易证AHGBGC,可得AGBC4,AHBG8,BCAH,,AEAB如图2中,当CHHG时,易证AHBC4,BCAH,1,AEBE2如图3中,当CGCH时,易证ECBDCF22.3在BC上取一点M,使得BMBE,BMEBEM43,
22、BMEMCE+MEC,MCEMEC22.3,CMEM,设BMBEm,则CMEMm,m+m4,m4(1),AE44(1)84,综上所述,满足条件的m的值为或2或84【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题20、(1)证明见解析;(2)MC=.【解析】【分析】(1)连接OC,利用切线的性质证明即可;(2)根据相似三角形的判定和性质以及勾股定理解答即可【详解】(1)连接OC,CN为O的切线,OCCM,OCA+ACM=90,OMAB,OAC+ODA=90,OA=OC,OAC=OCA,ACM=ODA=CD
23、M,MD=MC;(2)由题意可知AB=52=10,AC=4,AB是O的直径,ACB=90,BC=2,AOD=ACB,A=A,AODACB,即,可得:OD=2.5,设MC=MD=x,在RtOCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=,即MC=【点睛】本题考查了切线的判定和性质、相似三角形的判定和性质、勾股定理等知识,准确添加辅助线,正确寻找相似三角形是解决问题的关键.21、(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆【解析】分析:(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1
24、)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得详解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:,解得:,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a400+2a3201840000,解得:a1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000=3辆、
25、至少享有B型车2000=2辆点睛:本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等(或不等)关系,并据此列出方程组22、(1)见解析;(1)O半径为【解析】(1)连接OA,利用已知首先得出OADE,进而证明OAAE就能得到AE是O的切线;(1)通过证明BADAED,再利用对应边成比例关系从而求出O半径的长【详解】解:(1)连接OA,OA=OD,1=1DA平分BDE,1=21=2OADEOAE=4,AECD,4=90OAE=90,即OAAE又点A在O上,AE是O的切线(1)BD是O的直径,BAD=903=90,BAD=3又1=2,BADAED,BA=4,A
26、E=1,BD=1AD在RtBAD中,根据勾股定理,得BD=O半径为23、(1)2000件;(2)90260元【解析】(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,根据单价=总价数量结合第二批比第一批的进价涨了4元/件,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)用(1)的结论2可求出第二批购进该种衬衫的数量,再利用总利润=销售收入-成本,即可得出结论【详解】解:(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,根据题意得:-=4,解得:x=2000,经检验,x=2000是所列分式方程的解,且符合题意答:商场第一批购进衬衫2000件(2)20002=4000(件
27、),(2000+4000-150)58+150580.8-80000-176000=90260(元)答:售完这两批衬衫,商场共盈利90260元【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算24、2x27xy,1【解析】根据完全平方公式及多项式的乘法法则展开,然后合并同类项进行化简,然后把x、y的值代入求值即可.【详解】原式x24xy+4y2+x24xy+xy4y22x27xy,当x5,y时,原式5071【点睛】完全平方公式和多项式的乘法法则是本题的考点,能够正确化简多项式是解题的关键.25、(1)详见解析(2)【解析】设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为、,其余两把钥匙分别为、,根据题意,可以画出树形图,再根据概率公式求解即可.【详解】(1)设两把不同的锁分别为A、B,能把两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 7765-2:2025 EN Plastics film and sheeting - Determination of impact resistance by the free-falling dart method - Part 2: Instrumented puncture test
- 【正版授权】 ISO 23317:2025 EN Implants for surgery - Materials - Simulated body fluid (SBF) preparation procedure and test method to detect apatite formation in SBF for initial screenin
- 【正版授权】 ISO 23308-3:2025 EN Energy efficiency of industrial trucks - Test methods - Part 3: Container handling lift trucks
- 【正版授权】 ISO 15238:2025 EN Coal - Determination of total cadmium
- 贵阳贵安2025年公开招聘事业单位工作人员笔试历年典型考题及考点剖析附带答案详解
- 【金华】2025年浙江金华东阳市教育系统公开招聘事业编制教师60人笔试历年典型考题及考点剖析附带答案详解
- 2020-2025年环境影响评价工程师之环评技术导则与标准自我检测试卷A卷附答案
- 1.2幼儿园教学课件
- 办公软件案例教程(Office2016) 课件全套 第1-5篇 行政篇-财务篇
- 兰州大学教学课件
- 财务共享公司建设方案
- 小学数学-二年级升三年级暑假数学作业-口算 +竖式计算
- 2025至2030内燃机市场发展趋势分析与未来投资战略咨询研究报告
- 汽车散热器安装施工方案与技术措施
- 2025年陕西延长石油招聘笔试备考题库(带答案详解)
- 山西省烟草专卖局(公司)笔试试题2024
- 江苏扬州经济技术开发区区属国有企业招聘笔试真题2024
- 华为emt轮岗管理制度
- Alport综合征基因诊断
- 搜身带离技术课件
- 光伏电站设备移交生产验收标准
评论
0/150
提交评论