数字信号处理与DSP器件:Discrete-Time Signals and Systems_第1页
数字信号处理与DSP器件:Discrete-Time Signals and Systems_第2页
数字信号处理与DSP器件:Discrete-Time Signals and Systems_第3页
数字信号处理与DSP器件:Discrete-Time Signals and Systems_第4页
数字信号处理与DSP器件:Discrete-Time Signals and Systems_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Chapter 3-4. Discrete-Time Signals and SystemsMain ContentsImportant types of signals and their operationsLinear and shift-invariant systemEasier to analyze and implementThe convolution and difference equation representationsRepresentations and implementation of signal and systems using MATLABDiscre

2、te-time signalsAnalog and discrete signalsanalog signal t represents any physical quantity, time in sec.Discrete signal: discrete-time signalN is integer valued, represents discrete instances in timesDiscrete-time signalIn Matlab, a finite-duration sequence representation requires two vectors, and e

3、ach for x and n.Example:Question: whether or not an arbitrary infinite-duration sequence can be represented in MATLAB?Types of sequencesElementary sequence for analysis purposes1. Unit sample sequenceRepresentation in MATLABFunction x,n=impseq(n0,n1,n2)A: n=n1:n2; x = zeros(1,n2-n1+1); x(n0-n1+1)=1;

4、B: n=n1:n2; x = (n-n0)=0; stem(n,x,ro);Program P1_12. Unit step sequenceA: n=n1:n2; x=zeros(1,n2-n2+1); x(n0-n1+1:end)=1;B: n=n1:n2; x=(n-n0)=0;3. Real-valued exponential sequenceFor Example:n=0:10; x=(0.9).n; stem(n,x,ro);Program P1_3MATLAB中数组、矩阵基本运算符 运算 符号 举例加法,a+b + 1 2+3 4 1,2+3减法,a-b - 1 2-3 4

5、1,2-3乘法,a*b * 1,2*3 1,2*3,4 a.*b .* 1,2.*3,4=3,8逆乘,左乘 ax=b x=ab=inv(a)*b 右乘 / xa=b x=b/a=b*inv(a)乘幂,方阵的幂 a2=a*a 元素的幂 . a.2 x.34. Complex-valued exponential sequenceAttenuation: 衰减因子frequency in radians:For Example: n=0:10; x=exp(2+3j)*n);5. Sinusoidal sequencePhase in radiansFor Example:n=0:10; x=3*

6、cos(0.1*pi*n+pi/3)+2*sin(0.5*pi*n)6. Random sequenceRand(1,N)Generate a length N random sequence whose elements are uniformly distributed between 0,1Randn(1,N)Generate a length N Gaussian random sequence with mean 0 and variance 1. en 0,17. Periodic sequenceA sequence x(n) is periodic if x(n)=x(n+N)

7、The smallest integer N is called the fundamental periodFor exampleA: xtilde=x,x,x,xB: xtilde=x*ones(1,P); xtilde=xtilde(:); xtilde=xtilde; transpositionOperations on sequence1. Signal additionSample-by-sample additionx1(n)+x2(n)=x1(n)+x2(n)3. Scalingax(n)=ax(n)5. foldingy(n)=x(n-k)m=n-k; y=x;4. Shif

8、tingy(n)=x(-n)y=fliplr(x); n=-fliplr(n);6. Sample summation ss = sum(x(n1:n2);7. Sample production sp = prod(x(n1:n2);8. Signal energy se = sum(x .* conj(x); or se = sum(abs(x) . 2);9. Signal powerSome useful resultsUnit sample synthesisAny arbitrary sequence can be synthesized as a weighted sum of

9、delayed and scaled unit sample sequence. Even and odd synthesis Even (symmetric): xe(-n)=xe(n)Odd (antisymmetric): xo(-n)=-xo(n)Any arbitrary real-valued sequence can be decomposed into its even and odd component: x (n)=xe(n)+ xo(n) The geometric seriesA one-side exponential sequence of the form an,

10、 n=0, where a is an arbitrary constant, is called a geometric series.Expression for the sum of any finite number of terms of the seriesCorrelations of sequencesIt is a measure of the degree to which two sequences are similar. Given two real-valued sequences x(n) and y(n) of finite energy,Crosscorrel

11、ationAutocorrelationThe index l is called the shift or lag parameter.The special case: y(n)=x(n)Voice recognitionCrosscorrelation outputDiscrete SystemsMathematically, an operation T.y(n) = T x(n)x(n): excitation, input signaly(n): response, output signalClassificationLinear systemsNonlinear systems

12、Linear operation L.Iff L. satisfies the principle of superpositionThe output y(n) of a linear system to an arbitrary input x(n) is called impulse response, and is denoted by h(n,k)h(n,k): the time-varying impulse responseLinear time-invariant (LTI) systemA linear system in which an input-output pair

13、 is invariant to a shift n in time is called a linear times-invariant systemy(n) = Lx(n) - y(n-k) = Lx(n-k)The output of a LTI system is call a linear convolution sumAn LTI system is completely characterized in the time domain by the impulse response h(n).Properties of the LTI systemStabilityA syste

14、m is said to be bounded-input bounded-output (BIBO) stable if every bounded input produces a bounded output.Condition: absolutely summableTo avoid building harmful systems or to avoid burnout or saturation in system operationProperties of the LTI systemCausalityA system is said to be causal if the o

15、utput at index n0 depends only on the input up to and including the index n0The output does not depend on the future values of the inputCondition: h(n) = 0, n 0Such a sequence is termed a causal sequence.To make sure that systems can be built. ConvolutionConvolution can be evaluated in many differen

16、t waysIf the sequences are mathematical functions, then we can analytically evaluate x(n)*h(n) for all n to obtain a functional form of y(n)Graphical interpretation, folded-and-shifted versionFunction form of convolutionThree different conditions under which u(n-k) can be evaluated:Case 1: n0 % the

17、nonzero values of x(n)and y(n) do not overlap.Case 2: 0=n=9 % completely overlapsFolded-and-shiftedSignals x=x(1),x(2),x(3),x(4),x(5)System Impulse Response: h=h(1),h(2)h(3),h(4)y=conv(x,h)y(1)=x(1)*h(1); y(2)=x(1)*h(2)+x(2)*h(1)y(3)=x(1)*h(3)+x(2)*h(2)+x(3)*h(1); x(1),x(2),x(3),x(4),x(5) h(4),h(3),

18、h(2),h(1)Note that the resulting sequence y(n) has a longer length than both the x(n) and h(n) sequence.Sequence correlations revisitedThe correlation can be computed using the conv function if sequences are of finite duration.Example 2.8The meaning of the crosscorrelationThis approach can be used i

19、n applications like radar signal processing in identifying and localizing targets.Difference EquationAn LTI discrete system can also be described by a linear constant coefficient difference equation of the formIf aN = 0, then the difference equation is of order NIt describes a recursive approach for

20、 computing the current output,given the input values and previously computed output values.Solution of difference equationy(n) = yH(n) + yP(n)Homogeneous part: yH(n)Particular part: yP(n)Analytical approach using Z-transform will be discussed in the funtureNumerical solution with Matlaby = filter(b,

21、a,x)Zero-input and Zero-state responseIn DSP the difference equation is generally solved forward in time from n=0. Therefore initial conditions on x(n) and y(n) are necessary to determine the output for n=0.Subject to the initial conditions:Solution:Zero-input and Zero-state responseyZI(n): zero-input solutionA solution due to the ini

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论