版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、13.3角的平分线的性质(2)1、会用尺规作角的平分线.角的平分线上的点到角的两边的距离相等2、角的平分线的性质:OCB1A2PDEPDOA,PEOB OC是AOB的平分线 PDPE用数学语言表述:复习如图所示, ABC中,AB=AC,M为BC中点,MDAB于D,MEAC于E。求证:MD=ME。 复习如图,在ABC中,已知AC=BC,C=900,AD 是ABC的角平分线,DEAB,垂足为E.求证:ABACCD.EDABC 复习 反过来,到一个角的两边的距离相等的点是否一定在这个角的平分线上呢? 已知:如图,QDOA,QEOB,点D、E为垂足,QDQE求证:点Q在AOB的平分线上思考证明: QD
2、OA,QEOB(已知), QDOQEO90(垂直的定义)在RtQDO和RtQEO中 QOQO(公共边) QD=QE RtQDORtQEO(HL) QODQOE 点Q在AOB的平分线上已知:如图,QDOA,QEOB,点D、E为垂足,QDQE求证:点Q在AOB的平分线上到角的两边的距离相等的点在角的平分线上。 QDOA,QEOB,QDQE点Q在AOB的平分线上用数学语言表示为:角的平分线上的点到角的两边的距离相等. QDOA,QEOB,点Q在AOB的平分线上 QDQE如图, ABC的角平分线BM,CN相交于点P,求证:点P到三边AB、BC、CA的距离相等BM是ABC的角平分线,点P在BM上,ABC
3、PMNDEFPD=PE(角平分线上的点到这个角的两边距离相等).同理,PE=PF.PDPE=PF.即点P到三边AB、BC、CA的距离相等证明:过点P作PDAB于D,PEBC于E,PFAC于F如图,已知ABC的外角CBD和BCE的平分线相交于点F,求证:点F在DAE的平分线上 证明:过点F作FGAE于G,FHAD于H,FMBC于MGHM点F在BCE的平分线上, FGAE, FMBCFGFM又点F在CBD的平分线上, FHAD, FMBCFMFHFGFH点F在DAE的平分线上如图,在ABC中,D是BC的中点,DEAB,DFAC,垂足分别是E,F,且BECF。求证:AD是ABC的角平分线。ABCEF
4、D利用结论,解决问题练一练 1、如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村.要使这个度假村到三条公路的距离相等,应在何处修建?想一想 在确定度假村的位置时,一定要画出三个角的平分线吗?你是怎样思考的?你是如何证明的?2.已知:在四边形ABCD中,B=C=90,P为BC中点且DP平分ADC求证:AP平分DAB拓展与延伸2、直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有:( ) A.一处 B. 两处 C.三处 D.四处分析:由于没有限制在何处选址,故要求的地址共有四处。 1.角平分线的性质定理:在角平分线上的点到角的两边的距离相等 2.角平分线的判定定理:到一个角的两边的距离相等的点,在这个角平分线上。 角平分线的性质定理是证明线段相等的新途径. 角平分线的逆定理是证明点在角平分线上(角相等) 3.性质定理和逆定理的关系点在角平分线上 点到角两边的距离相等 总结归纳证明线段相等的方法:全等三角形的对应边相等角平分线的性质定理等角对等边等腰三角形的三线合一到角的两边的距离相等的点在角的平分线上。 QDOA,QEOB,QDQE点Q在AOB的平分线上用数学语言表示为:角的平分线上的点到角的两边的距离相等. QDOA,QEOB,点Q在AOB的平分线上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 炼油厂每日安全分享
- 糖尿病胰岛素种类
- 术后肺部感染如何预防与护理
- 厨房规划方案总结
- 4-2-2 元素周期表及元素周期律的应用 课件 高一上学期化学人教版(2019)必修第一册
- 黑客攻击解决方案
- 消化道大出血的应急流程演练
- 消防安全知识演练
- 氧化硫说课稿
- 化简比说课稿人教版
- 风险管理方法及应急方案
- 手糊补强工A卷考试 (1)附有答案
- 做一颗硬核牛油果让勤励成为青春底色课件高中心理健康教育主题班会
- 小区物业、保安服务投标方案(技术标)
- 新课标背景下“物联网实践与探索”模块教学实践
- CJT511-2017 铸铁检查井盖
- 2024年云南省中考数学试卷
- 社会实践调查工作报告标准版(10篇)
- 施工现场临时用电培训
- 教学查房 胸痛
- 2024-年体育赛事承办合同协议书共五则
评论
0/150
提交评论