




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图所示的几何体的左视图是( )ABCD2方程的解为()Ax=4Bx=3Cx=6D此方程无解3下列几何体中三视图完全相同的是()ABCD4已知抛物线yx2+3向左平移2个单位,那么
2、平移后的抛物线表达式是()Ay(x+2)2+3 By(x2)2+3 Cyx2+1 Dyx2+55用圆心角为120,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A cmB3cmC4cmD4cm6计算结果是( )A0B1C1Dx7如图是婴儿车的平面示意图,其中ABCD,1=120,3=40,那么2的度数为( )A80B90C100D1028在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A16个B15个C13个D12个9一次函数y=kx+k(k0)和反比例函数在同
3、一直角坐标系中的图象大致是( )ABCD10某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是( )A这10名同学体育成绩的中位数为38分B这10名同学体育成绩的平均数为38分C这10名同学体育成绩的众数为39分D这10名同学体育成绩的方差为211在实数3.5、2、0、4中,最小的数是()A3.5B2C0D412如图,A、B、C、D四个点均在O上,AOD=70,AODC,则B的度数为( )A40B45C50D55二、填空题:(本大题共6个小题,每小题4分,共24分)13若正多边形的一个内角等于120,则这个正多边
4、形的边数是_14二次函数的图象与x轴有_个交点15在平面直角坐标系中,若点P(2x6,5x)在第四象限,则x的取值范围是_;16如图,BD是矩形ABCD的一条对角线,点E,F分别是BD,DC的中点若AB4,BC3,则AE+EF的长为_17如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,AEQ沿EQ翻折形成FEQ,连接PF,PD,则PF+PD的最小值是_18计算()()的结果等于_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知:如图,点A,F,C,D在同一直线上,AF=DC,ABDE,AB=DE,连接B
5、C,BF,CE求证:四边形BCEF是平行四边形20(6分)为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整)这次调查中,一共调查了_名学生;请补全两幅统计图;若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率21(6分)如图,AD是ABC的中线,AD12,AB13,BC10,求A
6、C长22(8分)计算:21+|+2cos3023(8分)先化简,后求值:a2a4a8a2+(a3)2,其中a=124(10分)某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x70时,y80;x60时,y1在销售过程中,每天还要支付其他费用350元求y与x的函数关系式,并写出自变量x的取值范围;求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;当销售单价为多少元时,该公司日获利最大?最大利润是多少元?25(10分)如图,已知抛物线y=x
7、2+bx+c经过ABC的三个顶点,其中点A(0,1),点B(9,10),ACx轴,点P是直线AC下方抛物线上的动点(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由26(12分)已知是的函数,自变量的取值范围是的全体实数,如表是与的几组对应值小华根据学习函数的经验,利用上述表格所反映出的与之间的变化规律,对该函数的图象与性质进行了探究下面是小华的探究过程,请补充完整:(
8、1)从表格中读出,当自变量是2时,函数值是 ;(2)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出时所对应的点,并写出 (4)结合函数的图象,写出该函数的一条性质: 27(12分)如图,小明的家在某住宅楼AB的最顶层(ABBC),他家的后面有一建筑物CD(CDAB),他很想知道这座建筑物的高度,于是在自家阳台的A处测得建筑物CD的底部C的俯角是43,顶部D的仰角是25,他又测得两建筑物之间的距离BC是28米,请你帮助小明求出建筑物CD的高度(精确到1米)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题
9、给出的四个选项中,只有一项是符合题目要求的)1、A【解析】本题考查的是三视图左视图可以看到图形的排和每排上最多有几层所以选择A2、C【解析】先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验.【详解】方程两边同时乘以x2得到1(x2)3,解得x6.将x6代入x2得624,x6就是原方程的解.故选C【点睛】本题考查的是解分式方程,熟知解分式方程的基本步骤是解答此题的关键.3、A【解析】找到从物体正面、左面和上面看得到的图形全等的几何体即可【详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、圆锥的俯视图与主视图和左视图不同,错误;D、四棱锥的
10、俯视图与主视图和左视图不同,错误;故选A【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体4、A【解析】结合向左平移的法则,即可得到答案.【详解】解:将抛物线yx23向左平移2个单位可得y(x2)23,故选A.【点睛】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答.5、C【解析】利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高【详解】L4(cm);圆锥的底面半径为422(cm),这个圆
11、锥形筒的高为(cm)故选C【点睛】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形6、C【解析】试题解析:.故选C.考点:分式的加减法.7、A【解析】分析:根据平行线性质求出A,根据三角形内角和定理得出2=1801A,代入求出即可详解:ABCD.A=3=40,1=60,2=1801A=80,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180.8、D【解析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可【详
12、解】解:设白球个数为:x个,摸到红色球的频率稳定在25%左右,口袋中得到红色球的概率为25%, ,解得:x=12,经检验x=12是原方程的根,故白球的个数为12个故选:D【点睛】本题考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题的关键9、C【解析】A、由反比例函数的图象在一、三象限可知k0,由一次函数的图象过二、四象限可知k0,两结论相矛盾,故选项错误; B、由反比例函数的图象在二、四象限可知k0,由一次函数的图象与y轴交点在y轴的正半轴可知k0,两结论相矛盾,故选项错误;C、由反比例函数的图象在二、四象限可知k0,由一次函数的图象过二、三、四象限可知k0,两结论一致,故
13、选项正确;D、由反比例函数的图象在一、三象限可知k0,由一次函数的图象与y轴交点在y轴的负半轴可知k0,两结论相矛盾,故选项错误,故选C10、C【解析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数=38.4方差=(3638.4)2+2(3738.4)2+(3838.4)2+4(3938.4)2+2(4038.4)2=1.64;选项A,B、D错误;故选C考点:方差;加权平均数;中位数;众数11、D【解析】根据任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而
14、小进行比较即可【详解】在实数3.5、2、0、4中,最小的数是4,故选D【点睛】掌握实数比较大小的法则12、D【解析】试题分析:如图,连接OC,AODC,ODC=AOD=70,OD=OC,ODC=OCD=70,COD=40,AOC=110,B=AOC=55故选D考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质二、填空题:(本大题共6个小题,每小题4分,共24分)13、6【解析】试题分析:设所求正n边形边数为n,则120n=(n2)180,解得n=6;考点:多边形内角与外角14、2【解析】【分析】根据一元二次方程x2+mx+m-2=0的根的判别式的符号进行判定二次函数y=x2+mx+m-
15、2的图象与x轴交点的个数【详解】二次函数y=x2+mx+m-2的图象与x轴交点的纵坐标是零,即当y=0时,x2+mx+m-2=0,=m2-4(m-2)=(m-2)2+40,一元二次方程x2+mx+m-2=0有两个不相等是实数根,即二次函数y=x2+mx+m-2的图象与x轴有2个交点,故答案为:2.【点睛】本题考查了抛物线与x轴的交点二次函数y=ax2+bx+c(a,b,c是常数,a0)的交点与一元二次方程ax2+bx+c=0根之间的关系=b2-4ac决定抛物线与x轴的交点个数=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x
16、轴没有交点15、3x1【解析】根据第四象限内横坐标为正,纵坐标为负可得出答案.【详解】点P(2x-6,x-5)在第四象限,2x+605x0 解得-3x1故答案为-3x1.【点睛】本题考查了点的坐标、一元一次不等式组,解题的关键是知道平面直角坐标系中第四象限横、纵坐标的符号.16、1【解析】先根据三角形中位线定理得到的长,再根据直角三角形斜边上中线的性质,即可得到的长,进而得出计算结果【详解】解:点E,F分别是的中点,FE是BCD的中位线, .又E是BD的中点,RtABD中,故答案为1【点睛】本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一
17、半;三角形的中位线平行于第三边,并且等于第三边的一半17、1【解析】如图作点D关于BC的对称点D,连接PD,ED,由DP=PD,推出PD+PF=PD+PF,又EF=EA=2是定值,即可推出当E、F、P、D共线时,PF+PD定值最小,最小值=EDEF【详解】如图作点D关于BC的对称点D,连接PD,ED,在RtEDD中,DE=6,DD=1,ED=10,DP=PD,PD+PF=PD+PF,EF=EA=2是定值,当E、F、P、D共线时,PF+PD定值最小,最小值=102=1,PF+PD的最小值为1,故答案为1【点睛】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间
18、线段最短解决最短问题.18、4【解析】利用平方差公式计算.【详解】解:原式=()2-()2=7-3=4.故答案为:4.【点睛】本题考查了二次根式的混合运算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、证明见解析【解析】首先证明ABCDEF(ASA),进而得出BC=EF,BCEF,进而得出答案【详解】ABDE,A=D,AF=CD,AC=DF,在ABC和DEF中,ABCDEF,BC=EF,ACB=DFE,BCEF,四边形BCEF是平行四边形【点睛】本题考查了全等三角形的判定与性质与平行四边形的判定,解题的关键是熟练的掌握全等三角形的判定与性质与平行四边形的
19、判定.20、(1)200;(2)答案见解析;(3)【解析】(1)由题意得:这次调查中,一共调查的学生数为:4020%=200(名);(2)根据题意可求得B占的百分比为:1-20%-30%-15%=35%,C的人数为:20030%=60(名);则可补全统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一人是喜欢跳绳、一人是喜欢足球的学生的情况,再利用概率公式即可求得答案【详解】解:(1)根据题意得:这次调查中,一共调查的学生数为:4020%=200(名);故答案为:200;(2)C组人数:200407030=60(名) B组百分比:70200100%=35% 如图 (3)分
20、别用A,B,C表示3名喜欢跳绳的学生,D表示1名喜欢足球的学生;画树状图得:共有12种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有6种情况,一人是喜欢跳绳、一人是喜欢足球的学生的概率为:【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图用到的知识点为:概率=所求情况数与总情况数之比21、2.【解析】根据勾股定理逆定理,证ABD是直角三角形,得ADBC,可证AD垂直平分BC,所以AB=AC.【详解】解:AD是ABC的中线,且BC=10,BD=BC=112+122=22,即BD2+AD2=AB2,ABD是直角三角形,则ADBC,又CD=BD,AC=AB=2【点睛】本题考核
21、知识点:勾股定理、全等三角形、垂直平分线.解题关键点:熟记相关性质,证线段相等.22、+4【解析】原式利用负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可求出值【详解】原式+2+2+4【点睛】本题考查了实数的运算,涉及了负整数指数幂、特殊角的三角函数值、二次根式的化简等,熟练掌握各运算的运算法则是解本题的关键23、1【解析】先进行同底数幂的乘除以及幂的乘方运算,再合并同类项得到化简后的式子,将a的值代入化简后的式子计算即可.【详解】原式=a6a6+a6=a6,当a=1时,原式=1【点睛】本题主要考查同底数幂的乘除以及幂的乘方运算法则.24、 (1) y2x+220(40 x70)
22、;(2) w2x2+300 x9150;(3) 当销售单价为70元时,该公司日获利最大,为2050元【解析】(1)根据y与x成一次函数解析式,设为ykx+b(k0),把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润单价销售量,列出w关于x的二次函数解析式即可;(3)利用二次函数的性质求出w的最大值,以及此时x的值即可【详解】(1)设ykx+b(k0),根据题意得,解得:k2,b220,y2x+220(40 x70);(2)w(x40)(2x+220)3502x2+300 x91502(x75)2+21;(3)w2(x75)2+21,40 x70,
23、x70时,w有最大值为w225+212050元,当销售单价为70元时,该公司日获利最大,为2050元【点睛】此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键25、 (1) 抛物线的解析式为y=x2-2x+1,(2) 四边形AECP的面积的最大值是,点P(,);(3) Q(4,1)或(-3,1).【解析】(1)把点A,B的坐标代入抛物线的解析式中,求b,c;(2)设P(m,m22m1),根据S四边形AECPSAECSAPC,把S四边形AECP用含m式子表示,根据二次函数的性质求解;(3)设Q(t,1),分别求出点A,B,C,P的坐标,求
24、出AB,BC,CA;用含t的式子表示出PQ,CQ,判断出BACPCA45,则要分两种情况讨论,根据相似三角形的对应边成比例求t.【详解】解:(1)将A(0,1),B(9,10)代入函数解析式得:819bc10,c1,解得b2,c1,所以抛物线的解析式yx22x1;(2)ACx轴,A(0,1),x22x11,解得x16,x20(舍),即C点坐标为(6,1),点A(0,1),点B(9,10),直线AB的解析式为yx1,设P(m,m22m1),E(m,m1),PEm1(m22m1)m23m.ACPE,AC6,S四边形AECPSAECSAPCACEFACPFAC(EFPF)ACEP6(m23m)m29m.0m6,当m时,四边形AECP的面积最大值是,此时P();(3)yx22x1(x3)22,P(3,2),PFyFyp3,CFxFxC3,PFCF,PCF45,同理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 孩子受伤家长协议书
- 房屋破损重修协议书
- 2025年03月台州市黄岩区事业单位公开招聘100人【编制】笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 直联式真空泵项目风险评估报告
- 辽宁省葫芦岛协作校2025年高三下学期第二次验收考试数学试题试卷含解析
- 压电陶瓷元件项目安全风险评价报告
- 哈尔滨北方航空职业技术学院《建设项目管理软件及应用》2023-2024学年第二学期期末试卷
- 正德职业技术学院《科学计算基础》2023-2024学年第一学期期末试卷
- 湖南铁路科技职业技术学院《舞蹈二》2023-2024学年第二学期期末试卷
- 医院连锁项目安全评估报告
- 2022-2023学年江苏省扬州市江都区苏教版六年级下册期中测试数学试卷
- 2022版义务教育(道德与法治)课程标准(附课标解读)
- 建筑围护结构节能设计
- 水利工程建设标准强制性条文实施计划
- 2024年新华文轩出版传媒股份有限公司招聘笔试参考题库含答案解析
- 患病儿童及其家庭支持护理课件
- 《论十大关系》毛概课堂展示课件
- 畜牧兽医工作绩效自查报告
- 浆砌片石挡土墙工程施工方案
- 设备日常点检记录表
- 汽修实习报告总结2000字
评论
0/150
提交评论