




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,以AD为直径的半圆O经过R
2、tABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为()ABCD2下列计算正确的是( )ABCD3如图,在RtABC中,C=90, BE平分ABC,ED垂直平分AB于D,若AC=9,则AE的值是 ( )ABC6D44如图,矩形是由三个全等矩形拼成的,与,分别交于点,设,的面积依次为,若,则的值为( )A6B8C10D125如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则ACE的周长为( )A2+B2+2C4D36计算的值( )A1BC3D7如果两圆只有两条公切线,那么这两圆的位置关系是( )A内切
3、B外切C相交D外离8为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为()A11015B0.11014C0.011013D0.0110129(1)0+|1|=()A2 B1 C0 D110一个几何体的三视图如图所示,这个几何体是()A棱柱 B正方形 C圆柱 D圆锥二、填空题(共7小题,每小题3分,满分21分)11将直线yxb沿y轴向下平移3个单位长度,点A(1,2)关于y轴的对称点落在平移后的直线上,则b的值为_12如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到
4、BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为_13对于实数a,b,定义运算“”如下:ab=a2ab,例如,53=5253=1若(x+1)(x2)=6,则x的值为_14如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将ABP沿BP翻折至EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为_15计算(a2b)3=_16不等式组的解集是_17因式分解:_三、解答题(共7小题,满分69分)18(10分)现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树
5、苗6棵,或植C种树苗5棵经过统计,在整个过程中,每棵树苗的种植成本如图所示设种植A种树苗的工人为x名,种植B种树苗的工人为y名求y与x之间的函数关系式;设种植的总成本为w元,求w与x之间的函数关系式;若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树苗工人的概率19(5分)如图,已知ABC是等边三角形,点D在AC边上一点,连接BD,以BD为边在AB的左侧作等边DEB,连接AE,求证:AB平分EAC20(8分)如图平行四边形ABCD中,对角线AC,BD交于点O,EF过点O,并与AD,BC分别交于点E,F,已知AE=3,BF=5(1)求BC的长;(2)如果两条对角线长的和
6、是20,求三角形AOD的周长21(10分)如图,AB是O的直径,AC是O的切线,BC与O相交于点D,点E在O上,且DE=DA,AE与BC交于点F(1)求证:FD=CD;(2)若AE=8,tanE=34,求O的半径22(10分)如图1,直角梯形OABC中,BCOA,OA=6,BC=2,BAO=45 (1)OC的长为; (2)D是OA上一点,以BD为直径作M,M交AB于点Q当M与y轴相切时,sinBOQ=; (3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线BCO向点O运动当点P到达点A时,两点同时停止运动过点P作直线PEOC,与折线OB
7、A交于点E设点P运动的时间为t(秒)求当以B、D、E为顶点的三角形是直角三角形时点E的坐标23(12分)如图,点A(m,m1),B(m1,2m3)都在反比例函数的图象上(1)求m,k的值; (2)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式24(14分)如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58为了改善滑梯AB的安全性能,把倾斜角由58减至30,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58=0.85,cos58=0.53,tan58=1.60)参考答案一、选择题(每小题只有
8、一个正确答案,每小题3分,满分30分)1、D【解析】连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为SABCS扇形BOE,然后分别求出面积相减即可得出答案.【详解】解:连接BD,BE,BO,EO,B,E是半圆弧的三等分点,EOAEOBBOD60,BADEBA30,BEAD, 的长为 ,解得:R4,ABADcos30 ,BCAB,ACBC6,SABCBCAC6,BOE和ABE同底等高,BOE和ABE面积相等,图中阴影部分的面积为:SABCS扇形BOE故选:D【点睛】本题主要
9、考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.2、A【解析】原式各项计算得到结果,即可做出判断【详解】A、原式=,正确;B、原式不能合并,错误;C、原式=,错误;D、原式=2,错误故选A【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键3、C【解析】由角平分线的定义得到CBE=ABE,再根据线段的垂直平分线的性质得到EA=EB,则A=ABE,可得CBE=30,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC【详解】解:BE平分ABC,CBE=ABE,ED垂直平分AB于D,EA=EB,A=ABE,CBE=
10、30,BE=2EC,即AE=2EC,而AE+EC=AC=9,AE=1故选C4、B【解析】由条件可以得出BPQDKMCNH,可以求出BPQ与DKM的相似比为,BPQ与CNH相似比为,由相似三角形的性质,就可以求出,从而可以求出【详解】矩形AEHC是由三个全等矩形拼成的,AB=BD=CD,AEBFDGCH,BQP=DMK=CHN,ABQADM,ABQACH,EF=FG= BD=CD,ACEH,四边形BEFD、四边形DFGC是平行四边形, BEDFCG,BPQ=DKM=CNH, 又BQP=DMK=CHN,BPQDKM,BPQCNH,即,即,解得:,故选:B【点睛】本题考查了矩形的性质,平行四边形的判
11、定和性质,相似三角形的判定与性质,三角形的面积公式,得出S2=4S1,S3=9S1是解题关键5、B【解析】分析:根据线段垂直平分线的性质,把三角形的周长问题转化为线段和的问题解决即可.详解:DE垂直平分AB,BE=AE,AE+CE=BC=2,ACE的周长=AC+AE+CE=AC+BC=2+2,故选B点睛:本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等6、A【解析】根据有理数的加法法则进行计算即可【详解】故选:A【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键7、C【解析】两圆内含时,无公切线;两圆内切时,只有一条公切线;
12、两圆外离时,有4条公切线;两圆外切时,有3条公切线;两圆相交时,有2条公切线【详解】根据两圆相交时才有2条公切线故选C【点睛】本题考查了圆与圆的位置关系熟悉两圆的不同位置关系中的外公切线和内公切线的条数8、A【解析】根据科学记数法的表示方法解答.【详解】解:把这个数用科学记数法表示为故选:【点睛】此题重点考查学生对科学记数法的应用,熟练掌握小于0的数用科学记数法表示法是解题的关键.9、A【解析】根据绝对值和数的0次幂的概念作答即可.【详解】原式=1+1=2故答案为:A.【点睛】本题考查的知识点是绝对值和数的0次幂,解题关键是熟记数的0次幂为1.10、C【解析】试题解析:根据主视图和左视图为矩形
13、可判断出该几何体是柱体,根据俯视图是圆可判断出该几何体为圆柱.故选C.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】试题分析:先根据一次函数平移规律得出直线y=x+b沿y轴向下平移3个单位长度后的直线解析式y=x+b3,再把点A(1,2)关于y轴的对称点(1,2)代入y=x+b3,得1+b3=2,解得b=1故答案为1考点:一次函数图象与几何变换12、3【解析】先利用勾股定理求出BD,再求出DF、BF,设AE=EF=x在RtBEF中,由EB2=EF2+BF2,列出方程即可解决问题【详解】四边形ABCD是矩形,A=90AB=8,AD=6,BD1DEF是由DEA翻折得到,DF=AD=
14、6,BF=2设AE=EF=x在RtBEF中,EB2=EF2+BF2,(8x)2=x2+22,解得:x=3,AE=3故答案为:3【点睛】本题考查了矩形的性质、勾股定理等知识,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案13、2【解析】根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.【详解】由题意得,(x+2)2(x+2)(x2)=6,整理得,3x+3=6,解得,x=2,故答案为2【点睛】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键14、
15、4.1【解析】解:如图所示:四边形ABCD是矩形,D=A=C=90,AD=BC=6,CD=AB=1,根据题意得:ABPEBP,EP=AP,E=A=90,BE=AB=1,在ODP和OEG中,ODPOEG(ASA),OP=OG,PD=GE,DG=EP,设AP=EP=x,则PD=GE=6x,DG=x,CG=1x,BG=1(6x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(1x)2=(x+2)2,解得:x=4.1,AP=4.1;故答案为4.115、a6b3【解析】根据积的乘方和幂的乘方法则计算即可【详解】原式=(a2b)3=a6b3,故答案为a6b3.【点睛】本题考查了积的乘方和幂的乘
16、方,关键是掌握运算法则.16、x1【解析】分析:分别求出两个不等式的解,从而得出不等式组的解集详解:解不等式可得:x1, 解不等式可得:x3, 不等式组的解为x1点睛:本题主要考查的是不等式组的解集,属于基础题型理解不等式的性质是解决这个问题的关键17、【解析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解【详解】解:原式,故答案为:【点睛】本题考查提公因式,熟练掌握运算法则是解题关键.三、解答题(共7小题,满分69分)18、(1);(2);【解析】(1)先求出种植C种树苗的人数,根据现种植A、B、C三种树苗一共480棵,可以列出等量关系,解出y与x之间的关系;(2)分别求出种植A,
17、B,C三种树苗的成本,然后相加即可;求出种植C种树苗工人的人数,然后用种植C种树苗工人的人数总人数即可求出概率【详解】解:(1)设种植A种树苗的工人为x名,种植B种树苗的工人为y名,则种植C种树苗的人数为(80-x-y)人,根据题意,得:8x+6y+5(80-x-y)=480,整理,得:y=-3x+80;(2)w=158x+126y+85(80-x-y)=80 x+32y+3200,把y=-3x+80代入,得:w=-16x+5760,种植的总成本为5600元时,w=-16x+5760=5600,解得x=10,y=-310+80=50,即种植A种树苗的工人为10名,种植B种树苗的工人为50名,种
18、植B种树苗的工人为:80-10-50=20名采访到种植C种树苗工人的概率为:=【点睛】本题主要考查了一次函数的实际问题,以及概率的求法,能够将实际问题转化成数学模型是解答此题的关键19、详见解析【解析】由等边三角形的性质得出AB=BC,BD=BE,BAC=BCA=ABC=DBE=60,证出ABE=CBD,证明ABECBD(SAS),得出BAE=BCD=60,得出BAE=BAC,即可得出结论【详解】证明:ABC,DEB都是等边三角形,ABBC,BDBE,BACBCAABCDBE60,ABCABDDBEABD,即ABECBD,在ABE和CBD中,AB=CB,ABE=CBD,BE=BD,,ABECB
19、D(SAS),BAEBCD60,BAEBAC,AB平分EAC【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质等知识,熟练掌握等边三角形的性质,证明三角形全等是解题的关键20、 (1)8;(2)1.【解析】(1)由平行四边形的性质和已知条件易证AOECOF,所以可得AE=CF=3,进而可求出BC的长;(2)由平行四边形的性质:对角线互相平分可求出AO+OD的长,进而可求出三角形AOD的周长【详解】(1)四边形ABCD是平行四边形,ADBC,AO=CO,EAO=FCO,在AOE和COF中,AOECOF,AE=CF=3,BC=BF+CF=5+3=8;(2)四边形ABCD是平行四边形,AO=
20、CO,BO=DO,AD=BC=8,AC+BD=20,AO+BO=10,AOD的周长=AO+BO+AD=1【点睛】本题考查了平行四边形的性质和全等三角形的判定以及全等三角形的性质,能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键21、(1)证明见解析;(2)256;【解析】(1)先利用切线的性质得出CAD+BAD=90,再利用直径所对的圆周角是直角得出B+BAD=90,从而可证明B=EAD,进而得出EAD=CAD,进而判断出ADFADC,即可得出结论;(2)过点D作DGAE,垂足为G依据等腰三角形的性质可得到EG=AG=1,然后在RtGEG中
21、,依据锐角三角函数的定义可得到DG的长,然后依据勾股定理可得到AD=ED=2,然后在RtABD中,依据锐角三角函数的定义可求得AB的长,从而可求得O的半径的长【详解】(1)AC 是O 的切线,BAAC,CAD+BAD=90,AB 是O 的直径,ADB=90,B+BAD=90,CAD=B,DA=DE,EAD=E,又B=E,B=EAD,EAD=CAD,在ADF和ADC中,ADF=ADC=90,AD=AD,FAD=CAD,ADFADC,FD=CD(2)如下图所示:过点D作DGAE,垂足为GDE=AE,DGAE,EG=AG=12AE=1tanE=34,GDEG=34,即GD4=34,解得DG=1ED=
22、EG2+GD2=2B=E,tanE=34,sinB=ADAB=GDED=35,即5AB=35,解得AB=253O的半径为256【点睛】本题考查了切线的性质,圆周角定理,圆的性质,全等三角形的判定和性质,利用等式的性质 和同角的余角相等判断角相等是解本题的关键22、(4)4;(2);(4)点E的坐标为(4,2)、(,)、(4,2)【解析】分析:(4)过点B作BHOA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在AHB中运用三角函数求出BH即可 (2)过点B作BHOA于H,过点G作GFOA于F,过点B作BROG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MN
23、OC设圆的半径为r,则MN=MB=MD=r在RtBHD中运用勾股定理可求出r=2,从而得到点D与点H重合易证AFGADB,从而可求出AF、GF、OF、OG、OB、AB、BG设OR=x,利用BR2=OB2OR2=BG2RG2可求出x,进而可求出BR在RtORB中运用三角函数就可解决问题 (4)由于BDE的直角不确定,故需分情况讨论,可分三种情况(BDE=90,BED=90,DBE=90)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题详解:(4)过点B作BHOA于H,如图4(4),则有BHA=90=COA,OCBH BCOA,四边形OCBH是矩形,OC=BH,BC=OH
24、 OA=6,BC=2,AH=0AOH=OABC=62=4 BHA=90,BAO=45,tanBAH=4,BH=HA=4,OC=BH=4 故答案为4 (2)过点B作BHOA于H,过点G作GFOA于F,过点B作BROG于R,连接MN、DG,如图4(2) 由(4)得:OH=2,BH=4 OC与M相切于N,MNOC 设圆的半径为r,则MN=MB=MD=r BCOC,OAOC,BCMNOA BM=DM,CN=ON,MN=(BC+OD),OD=2r2,DH= 在RtBHD中,BHD=90,BD2=BH2+DH2,(2r)2=42+(2r4)2 解得:r=2,DH=0,即点D与点H重合,BD0A,BD=AD
25、 BD是M的直径,BGD=90,即DGAB,BG=AG GFOA,BDOA,GFBD,AFGADB,=,AF=AD=2,GF=BD=2,OF=4,OG=2 同理可得:OB=2,AB=4,BG=AB=2 设OR=x,则RG=2x BROG,BRO=BRG=90,BR2=OB2OR2=BG2RG2,(2)2x2=(2)2(2x)2 解得:x=,BR2=OB2OR2=(2)2()2=,BR= 在RtORB中,sinBOR= 故答案为 (4)当BDE=90时,点D在直线PE上,如图2 此时DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t 则有2t=2 解得:t=4则OP=CD=DB
26、=4 DEOC,BDEBCO,=,DE=2,EP=2,点E的坐标为(4,2) 当BED=90时,如图4 DBE=OBC,DEB=BCO=90,DBEOBC,=,BE=t PEOC,OEP=BOC OPE=BCO=90,OPEBCO,=,OE=t OE+BE=OB=2t+t=2 解得:t=,OP=,OE=,PE=,点E的坐标为() 当DBE=90时,如图4 此时PE=PA=6t,OD=OC+BCt=6t 则有OD=PE,EA=(6t)=6t,BE=BAEA=4(6t)=t2 PEOD,OD=PE,DOP=90,四边形ODEP是矩形,DE=OP=t,DEOP,BED=BAO=45 在RtDBE中,cosBED=,DE=BE,t=t2)=2t4 解得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年深圳市科力尔泵业有限公司介绍企业发展分析报告
- 三河市新辰建筑工程有限公司介绍企业发展分析报告模板
- 房屋买卖合同简单版(19篇)
- 南通蛙鲜生火锅有限公司介绍企业发展分析报告模板
- 2025-2030年中国移动式酒尾提酒器行业深度研究分析报告
- 2025年郑州防水堵漏剂项目投资分析报告参考范文
- 空气净化器租赁合同汇编(16篇)
- 钢板桩项目预算分析报告
- 2025-2030年中国中凹形簧行业深度研究分析报告
- 垃圾分类与处理项目可行性分析报告
- 2025年北京市海淀区高三一模政治试卷(含答案)
- 2023年江苏凤凰出版传媒集团有限公司招聘笔试模拟试题及答案解析
- 国开电大操作系统 Linux系统使用 实验报告
- 干部选拔任用工作全部系列表格
- 胃癌合并冠心病的护理查房
- 风电行业产品质量先期策划手册
- 社区日间照料中心运营方案
- 二年级下册期末教学质量分析P的课件
- 初中数学北师大七年级下册(2023年新编)综合与实践综合与实践-设计自己的运算程序 王颖
- 可燃气体报警系统安装记录
- 伸臂式焊接变位机设计总体设计和旋转减速器设计毕业设计
评论
0/150
提交评论