版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1二次函数y=ax2+bx+c(a0)的图象如图,下列四个结论:4a+c0;m(am+b)+ba(m1);关于x的一元二次方程ax2+(b1)x+c=0没有实数根;ak4+bk2a(k2+1)2+b(k2+1)(k为常数)其中正确结论的个数是
2、()A4个B3个C2个D1个2据浙江省统计局发布的数据显示,2017年末,全省常住人口为5657万人数据“5657万”用科学记数法表示为ABCD32017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌综合实力稳步提升全市地区生产总值达到280000亿元,将280000用科学记数法表示为()A280103B28104C2.8105D0.281064在,,则的值为( )ABCD5如图,在ABC中,C=90,B=10,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正
3、确的个数是AD是BAC的平分线;ADC=60;点D在AB的中垂线上;SDAC:SABC=1:1A1B2C1D46如图,两根竹竿AB和AD斜靠在墙CE上,量得ABC=,ADC=,则竹竿AB与AD的长度之比为ABCD7下列各点中,在二次函数的图象上的是( )ABCD8如图,有一些点组成形如四边形的图案,每条“边”(包括顶点)有n(n1)个点.当n2018时,这个图形总的点数S为()A8064B8067C8068D80729下列计算正确的是()Aa2a3a6B(a2)3a6Ca2+a2a3Da6a2a310若与 互为相反数,则x的值是()A1B2C3D4二、填空题(本大题共6个小题,每小题3分,共1
4、8分)11在RtABC中,ACB=90,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为_12下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2:甲乙丙丁平均数(cm)561560561560方差s2(cm2)3.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择_13如图,已知CD是RtABC的斜边上的高,其中AD=9cm,BD=4cm,那么CD等于_cm.14用换元法解方程,设y=,那么原方程化为关于y的整式方程是_15如图,在平面直角坐标系xOy中,ABC可以看作是DEF
5、经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由DEF得到ABC的过程_.16已知圆锥的高为3,底面圆的直径为8,则圆锥的侧面积为_三、解答题(共8题,共72分)17(8分)某水果店购进甲乙两种水果,销售过程中发现甲种水果比乙种水果销售量大,店主决定将乙种水果降价1元促销,降价后30元可购买乙种水果的斤数是原来购买乙种水果斤数的1.5倍(1)求降价后乙种水果的售价是多少元/斤?(2)根据销售情况,水果店用不多于900元的资金再次购进两种水果共500斤,甲种水果进价为2元/斤,乙种水果进价为1.5元/斤,问至少购进乙种水果多少斤?18(8分)如图,抛物线yx2bxc与x轴交于A、B两
6、点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D (2, 3).求抛物线的解析式和直线AD的解析式;过x轴上的点E (a,0) 作直线EFAD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.19(8分)如图1,抛物线y1=ax1x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GMx轴于点M将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y1(1)求抛物线y1的解析式;(1)如图1,在直线l上是否存在点T,使TAC是等腰三角形?若存在,请求出所有点T的坐标;若
7、不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y1于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与AMG全等,求直线PR的解析式20(8分)如图,在平面直角坐标系中,抛物线的图象经过和两点,且与轴交于,直线是抛物线的对称轴,过点的直线与直线相交于点,且点在第一象限(1)求该抛物线的解析式;(2)若直线和直线、轴围成的三角形面积为6,求此直线的解析式;(3)点在抛物线的对称轴上,与直线和轴都相切,求点的坐标21(8分)如图所示,某校九年级(3)班的一个学习小组进行测量小山高度的实践活动部分同学在山脚A点处测得山腰上一点D的仰角为30,并测得AD
8、的长度为180米另一部分同学在山顶B点处测得山脚A点的俯角为45,山腰D点的俯角为60,请你帮助他们计算出小山的高度BC(计算过程和结果都不取近似值)22(10分)在下列的网格图中.每个小正方形的边长均为1个单位,在RtABC中,C=90,AC=3,BC=4.(1)试在图中作出ABC以A为旋转中心,沿顺时针方向旋转90后的图形AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)中的坐标系作出与ABC关于原点对称的图形A2B2C2,并标出B2、C2两点的坐标.23(12分)如图,在直角坐标系xOy中,直线与双曲线相交于A(1,a)、B两点
9、,BCx轴,垂足为C,AOC的面积是1求m、n的值;求直线AC的解析式24如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于,两点,过作直线与轴负方向相交成的角,且交轴于点,以点为圆心的圆与轴相切于点.(1)求直线的解析式;(2)将以每秒1个单位的速度沿轴向左平移,当第一次与外切时,求平移的时间.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】因为二次函数的对称轴是直线x=1,由图象可得左交点的横坐标大于3,小于2,所以=1,可得b=2a,当x=3时,y0,即9a3b+c0,9a6a+c0,3a+c0,a0,4a+c0,所以选项结论正确;抛物线的对称轴是
10、直线x=1,y=ab+c的值最大,即把x=m(m1)代入得:y=am2+bm+cab+c,am2+bmab,m(am+b)+ba,所以此选项结论不正确;ax2+(b1)x+c=0,=(b1)24ac,a0,c0,ac0,4ac0,(b1)20,0,关于x的一元二次方程ax2+(b1)x+c=0有实数根;由图象得:当x1时,y随x的增大而减小,当k为常数时,0k2k2+1,当x=k2的值大于x=k2+1的函数值,即ak4+bk2+ca(k2+1)2+b(k2+1)+c,ak4+bk2a(k2+1)2+b(k2+1),所以此选项结论不正确;所以正确结论的个数是1个,故选D2、C【解析】科学记数法的
11、表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数【详解】解:5657万用科学记数法表示为,故选:C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值3、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】将280000用科学记数法表示为2
12、.81故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4、A【解析】本题可以利用锐角三角函数的定义求解即可【详解】解:tanA=,AC=2BC,tanA=故选:A【点睛】本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 5、D【解析】根据作图的过程可知,AD是BAC的平分线.故正确.如图,在ABC中,C=90,B=10,CAB=60.又AD是BAC的平分线,1=2=CAB=10,1=902=60,即ADC=60.故正确.1=B=10,AD=BD.点D在AB的中垂线上.故正确.如图,
13、在直角ACD中,2=10,CD=AD.BC=CD+BD=AD+AD=AD,SDAC=ACCD=ACAD.SABC=ACBC=ACAD=ACAD.SDAC:SABC故正确.综上所述,正确的结论是:,共有4个故选D.6、B【解析】在两个直角三角形中,分别求出AB、AD即可解决问题;【详解】在RtABC中,AB=,在RtACD中,AD=,AB:AD=:=,故选B【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题7、D【解析】将各选项的点逐一代入即可判断【详解】解:当x=1时,y=-1,故点不在二次函数的图象;当x=2时,y=-4,故点和点不在二次函数的图象;当x
14、=-2时,y=-4,故点在二次函数的图象;故答案为:D【点睛】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式8、C【解析】分析:本题重点注意各个顶点同时在两条边上,计算点的个数时,不要把顶点重复计算了详解:此题中要计算点的个数,可以类似周长的计算方法进行,但应注意各个顶点重复了一次 如当n=2时,共有S2=424=4;当n=3时,共有S3=434,依此类推,即Sn=4n4,当n=2018时,S2018=420184=1 故选C点睛:本题考查了图形的变化类问题,关键是通过归纳与总结,得到其中的规律9、B【解析】试题解析:A.故错误.B.正确.C.不是同类项,不能合并,故
15、错误.D. 故选B.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减.10、D【解析】由题意得+=0,去分母3x+4(1-x)=0,解得x=4.故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后在CEM中根据三边关系即可求解【详解】作AB的中点E,连接EM、CE,在直角ABC中,AB=10,E是直角ABC斜边AB上的中点,CE=AB=5,M是BD的中点,E是AB的中点,ME=AD=2,在CEM中,5-2CM5+2,即3CM1,最
16、大值为1,故答案为1【点睛】本题考查了点与圆的位置关系、三角形的中位线定理的知识,要结合勾股定理、直角三角形斜边上的中线等于斜边的一半解答12、甲【解析】首先比较平均数,平均数相同时选择方差较小的运动员参加【详解】 ,从甲和丙中选择一人参加比赛, ,选择甲参赛,故答案为甲【点睛】此题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立13、1【解析】利用ACDCBD,对应线段成比例就可以求出【详解】CDAB,ACB=90,ACDCBD,CD=1【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键14、6y2-5y+2=0【解析】根
17、据y,将方程变形即可【详解】根据题意得:3y,得到6y25y20故答案为6y25y20【点睛】此题考查了换元法解分式方程,利用了整体的思想,将方程进行适当的变形是解本题的关键15、先以点O为旋转中心,逆时针旋转90,再将得到的三角形沿x轴翻折.【解析】根据旋转的性质,平移的性质即可得到由DEF得到ABC的过程.【详解】由题可得,由DEF得到ABC的过程为:先以点O为旋转中心,逆时针旋转90,再将得到的三角形沿x轴翻折.(答案不唯一)故答案为:先以点O为旋转中心,逆时针旋转90,再将得到的三角形沿x轴翻折.【点睛】本题考查了坐标与图形变化旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线
18、的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.16、20【解析】利用勾股定理可求得圆锥的母线长,然后根据圆锥的侧面积公式进行计算即可.【详解】底面直径为8,底面半径=4,底面周长=8,由勾股定理得,母线长=5,故圆锥的侧面积=85=20,故答案为:20【点睛】本题主要考查了圆锥的侧面积的计算方法解题的关键是熟记圆锥的侧面展开扇形的面积计算方法三、解答题(共8题,共72分)17、(1)降价后乙种水果的售价是2元/斤;(2)至少购进乙种水果200斤【解析】(1)设降价后乙种水果的售价是x元, 30元可购买乙种水果的斤数是,原来购买乙种水果斤数是,根据题意即可列出
19、等式;(2)设至少购进乙种水果y斤,甲种水果(500y)斤,有甲乙的单价,总斤数900即可列出不等式,求解即可.【详解】解:(1)设降价后乙种水果的售价是x元,根据题意可得:,解得:x2,经检验x2是原方程的解,答:降价后乙种水果的售价是2元/斤;(2)设至少购进乙种水果y斤,根据题意可得:2(500y)+1.5y900,解得:y200,答:至少购进乙种水果200斤【点睛】本题考查了分式的应用和一元一次不等式的应用,根据题意列出式子是解题的关键18、(1) y=-x2+2x+3;y=x+1;(2)a的值为-3或【解析】(1)把点B和D的坐标代入抛物线y=-x2+bx+c得出方程组,解方程组即可
20、;由抛物线解析式求出点A的坐标,设直线AD的解析式为y=kx+a,把A和D的坐标代入得出方程组,解方程组即可;(2)分两种情况:当a-1时,DFAE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;当a-1时,显然F应在x轴下方,EFAD且EF=AD,设F (a-3,-3),代入抛物线解析式,即可得出结果【详解】解:(1)把点B和D的坐标代入抛物线y=-x2+bx+c得: 解得:b=2,c=3,抛物线的解析式为y=-x2+2x+3;当y=0时,-x2+2x+3=0,解得:x=3,或x=-1,B(3,0),A(-1,0);设直线AD的解析式为y=kx+a,把A和D的坐标代入得:
21、解得:k=1,a=1,直线AD的解析式为y=x+1; (2)分两种情况:当a-1时,DFAE且DF=AE,则F点即为(0,3),AE=-1-a=2,a=-3;当a-1时,显然F应在x轴下方,EFAD且EF=AD,设F (a-3,-3),由-(a-3)2+2(a-3)+3=-3,解得:a=;综上所述,满足条件的a的值为-3或【点睛】本题考查抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式及平行四边形的判定,综合性较强19、(1)y1=-x1+ x-;(1)存在,T(1,),(1,),(1,);(3)y=x+或y=【解析】(1)应用待定系数法求解析式;(1)设出点T坐标,表示TAC三
22、边,进行分类讨论;(3)设出点P坐标,表示Q、R坐标及PQ、QR,根据以P,Q,R为顶点的三角形与AMG全等,分类讨论对应边相等的可能性即可【详解】解:(1)由已知,c=,将B(1,0)代入,得:a=0,解得a=,抛物线解析式为y1=x1- x+,抛物线y1平移后得到y1,且顶点为B(1,0),y1=(x1)1,即y1=-x1+ x-;(1)存在,如图1:抛物线y1的对称轴l为x=1,设T(1,t),已知A(3,0),C(0,),过点T作TEy轴于E,则TC1=TE1+CE1=11+()1=t1t+,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=,当TC=AC时,t1t+=,
23、解得:t1=,t1=;当TA=AC时,t1+16=,无解;当TA=TC时,t1t+=t1+16,解得t3=;当点T坐标分别为(1,),(1,),(1,)时,TAC为等腰三角形;(3)如图1:设P(m,),则Q(m,),Q、R关于x=1对称R(1m,),当点P在直线l左侧时,PQ=1m,QR=11m,PQR与AMG全等,当PQ=GM且QR=AM时,m=0,P(0,),即点P、C重合,R(1,),由此求直线PR解析式为y=x+,当PQ=AM且QR=GM时,无解;当点P在直线l右侧时,同理:PQ=m1,QR=1m1,则P(1,),R(0,),PQ解析式为:y=;PR解析式为:y=x+或y=【点睛】本
24、题是代数几何综合题,考查了二次函数性质、三角形全等和等腰三角形判定,熟练掌握相关知识,应用数形结合和分类讨论的数学思想进行解题是关键20、(1);(2);(3)或【解析】(1)根据图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),可利用待定系数法求出二次函数解析式;(2)根据直线AB与抛物线的对称轴和x轴围成的三角形面积为6,得出AC,BC的长,得出B点的坐标,即可利用待定系数法求出一次函数解析式;(3)利用三角形相似求出ABCPBF,即可求出圆的半径,即可得出P点的坐标【详解】(1)抛物线的图象经过,把,代入得:解得:,抛物线解析式为;(2)抛物线改写成顶点式为,抛物线对称轴
25、为直线,对称轴与轴的交点C的坐标为,设点B的坐标为,则,点B的坐标为,设直线解析式为:,把,代入得:,解得:,直线解析式为:(3)当点P在抛物线的对称轴上,P与直线AB和x轴都相切,设P与AB相切于点F,与x轴相切于点C,如图1;PFAB,AF=AC,PF=PC,AC=1+2=3,BC=4,AB=5,AF=3,BF=2,FBP=CBA,BFP=BCA=90,ABCPBF,解得:,点P的坐标为(2,);设P与AB相切于点F,与轴相切于点C,如图2:PFAB,PF=PC,AC=3,BC=4, AB=5,FBP=CBA,BFP=BCA=90,ABCPBF,解得:,点P的坐标为(2,-6),综上所述,
26、与直线和都相切时,或【点睛】本题考查了二次函数综合题,涉及到用待定系数法求一函数的解析式、二次函数的解析式及相似三角形的判定和性质、切线的判定和性质,根据题意画出图形,利用数形结合求解是解答此题的关键21、米【解析】解:如图,过点D作DEAC于点E,作DFBC于点F,则有DEFC,DFECDEC=90,四边形DECF是矩形,DE=FCHBA=BAC=45,BAD=BACDAE=4530=15又ABD=HBDHBA=6045=15,ADB是等腰三角形AD=BD=180(米)在RtAED中,sinDAE=sin30=,DE=180sin30=180=90(米),FC=90米,在RtBDF中,BDF=HBD=60,sinBDF=sin60=,BF=180sin60=180(米)BC=BF+FC=90+90=90(+1)(米)答:小山的高度BC为90(+1)米22、(1)作图见解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年低碳园区能源互联项目营销方案
- 2026年促进传递膜项目营销方案
- 2026年可调指向性扬声器项目营销方案
- 2026年原创IP与衍生品项目营销方案
- 2026年人形机器人项目营销方案
- 小学英语词汇记忆方法与练习题考试及答案
- 顶管施工方案(专家论证)
- 大型深基坑土方开挖专项施工方案(完整版)
- 2025年化工安全教育试题题库及答案
- 2025年社区医生考试题库及答案
- 华为手机品牌营销策略研究毕业论文
- 2025年高等传热学试题及答案
- 2025年排版设计考试题库及答案
- 2024 四川省城镇管道燃气安全隐患分类和分级标准
- 2025届新疆乌鲁木齐市高三下学期三模英语试题(解析版)
- JJF 1183-2025 温度变送器校准规范
- 个人人身保险投保单
- 成本与管理会计学 课件 第7、8章 短期成本与经营决策、存货成本与存货管理
- YY/T 0313-2014医用高分子产品包装和制造商提供信息的要求
- 数据处理方法简述讲解课件
- GB∕T32400-2015信息技术云计算概览与词汇
评论
0/150
提交评论