河南省信阳第一2022年高考仿真卷数学试题含解析_第1页
河南省信阳第一2022年高考仿真卷数学试题含解析_第2页
河南省信阳第一2022年高考仿真卷数学试题含解析_第3页
河南省信阳第一2022年高考仿真卷数学试题含解析_第4页
河南省信阳第一2022年高考仿真卷数学试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知三棱锥且平面,其外接球体积为( )ABCD2已知函数(,),将函数的图象向左平移个单位长度,得到函数的部分图象如图所示,则是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件3已知函数满足当时,且当时,;当时,

2、且).若函数的图象上关于原点对称的点恰好有3对,则的取值范围是( )ABCD4已知复数,则对应的点在复平面内位于( )A第一象限B第二象限C第三象限D第四象限5下列判断错误的是( )A若随机变量服从正态分布,则B已知直线平面,直线平面,则“”是“”的充分不必要条件C若随机变量服从二项分布: , 则D是的充分不必要条件6甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为 ( )A8B7C6D57已知,复数,且为实数,则( )ABC3D-38函数的图像大致为( )ABCD9在中,角的对边分别为,若

3、则角的大小为()ABCD10已知非零向量满足,若夹角的余弦值为,且,则实数的值为( )ABC或D11对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析甲同学的成绩折线图具有较好的对称性,故平均成绩为130分;根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间110,120内;乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;乙同学连续九次测验成绩每一次均有明显进步其中正确的个数为()A4B3C2D112已知 ,且是的充分不必要条件,则的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。1

4、3已知复数z112i,z2a+2i(其中i是虚数单位,aR),若z1z2是纯虚数,则a的值为_14在中,内角所对的边分别是,若,则_.15若x,y满足,则的最小值为_.16已知函数,则_;满足的的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数(1)当时,求不等式的解集;(2)当时,求实数的取值范围18(12分)已知函数.(1)若,求不等式的解集;(2)若“,”为假命题,求的取值范围.19(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据

5、如表所示:试销价格(元)产品销量 (件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲; 乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数为的概率.20(12分)已知等差数列满足,.(l)求等差数列的通项公式;(2)设,求数列的前项和.21(12分)已知函数.(1)求不等式的解集;(2)若关于的不等式在区间内无解,求实数的取值范围.22(10分)某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由

6、玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆及其内接等腰三角形绕底边上的高所在直线旋转180而成,如图2.已知圆的半径为,设,圆锥的侧面积为.(1)求关于的函数关系式;(2)为了达到最佳观赏效果,要求圆锥的侧面积最大.求取得最大值时腰的长度.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】由,平面,可将三棱锥还原成长方体,则三棱锥的外接球即为长方体的外接球,进而求解.【详解】由题,因为,所以,设,则由,可得,解得,可将三棱锥还原成如图所示的长方体,则三棱锥的外接球即为长

7、方体的外接球,设外接球的半径为,则,所以,所以外接球的体积.故选:A【点睛】本题考查三棱锥的外接球体积,考查空间想象能力.2B【解析】先根据图象求出函数的解析式,再由平移知识得到的解析式,然后分别找出和的等价条件,即可根据充分条件,必要条件的定义求出.【详解】设,根据图象可知,再由, 取,.将函数的图象向右平移个单位长度,得到函数的图象,.,令,则,显然,是的必要不充分条件.故选:B【点睛】本题主要考查利用图象求正(余)弦型函数的解析式,三角函数的图形变换, 二倍角公式的应用,充分条件,必要条件的定义的应用,意在考查学生的数学运算能力和逻辑推理能力,属于中档题.3C【解析】先作出函数在上的部分

8、图象,再作出关于原点对称的图象,分类利用图像列出有3个交点时满足的条件,解之即可.【详解】先作出函数在上的部分图象,再作出关于原点对称的图象,如图所示,当时,对称后的图象不可能与在的图象有3个交点;当时,要使函数关于原点对称后的图象与所作的图象有3个交点,则,解得.故选:C.【点睛】本题考查利用函数图象解决函数的交点个数问题,考查学生数形结合的思想、转化与化归的思想,是一道中档题.4A【解析】利用复数除法运算化简,由此求得对应点所在象限.【详解】依题意,对应点为,在第一象限.故选A.【点睛】本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题.5D【解析】根据正态分布、空间中点

9、线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,依次对四个选项加以分析判断,进而可求解.【详解】对于选项,若随机变量服从正态分布,根据正态分布曲线的对称性,有,故选项正确,不符合题意;对于选项,已知直线平面,直线平面,则当时一定有,充分性成立,而当时,不一定有,故必要性不成立,所以“”是“”的充分不必要条件,故选项正确,不符合题意;对于选项,若随机变量服从二项分布: , 则,故选项正确,不符合题意;对于选项,仅当时有,当时,不成立,故充分性不成立;若,仅当时有,当时,不成立,故必要性不成立.因而是的既不充分也不必要条件,故选项不正确,符合题意.故选:D【点睛】本题考查正

10、态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,考查理解辨析能力与运算求解能力,属于基础题.6B【解析】根据题意满足条件的安排为:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙); A(甲,丁)B(丙)C(乙); A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7种,选B. 7B【解析】把和 代入再由复数代数形式的乘法运算化简,利用虚部为0求得m值【详解】因为为实数,所以,解得.【点睛】本题考查复数的概念,考查运算求解能力.8A【解析】根据排除,利用极限思想进行排除即可【

11、详解】解:函数的定义域为,恒成立,排除,当时,当,排除,故选:【点睛】本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题9A【解析】由正弦定理化简已知等式可得,结合,可得,结合范围,可得,可得,即可得解的值【详解】解:,由正弦定理可得:,故选A【点睛】本题主要考查了正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题10D【解析】根据向量垂直则数量积为零,结合以及夹角的余弦值,即可求得参数值.【详解】依题意,得,即.将代入可得,解得(舍去).故选:D.【点睛】本题考查向量数量积的应用,涉及由向量垂直求参数值,属基础题.11C【解析】利用图形,

12、判断折线图平均分以及线性相关性,成绩的比较,说明正误即可【详解】甲同学的成绩折线图具有较好的对称性,最高130分,平均成绩为低于130分,错误;根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间110,120内,正确;乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关,正确;乙同学在这连续九次测验中第四次、第七次成绩较上一次成绩有退步,故不正确故选:C【点睛】本题考查折线图的应用,线性相关以及平均分的求解,考查转化思想以及计算能力,属于基础题12D【解析】“是的充分不必要条件”等价于“是的充分不必要条件”,即中变量取值的集合是中变量取值集合的真子集.【详解】由题意知:

13、可化简为,所以中变量取值的集合是中变量取值集合的真子集,所以.【点睛】利用原命题与其逆否命题的等价性,对是的充分不必要条件进行命题转换,使问题易于求解.二、填空题:本题共4小题,每小题5分,共20分。13-1【解析】由题意,令即可得解.【详解】z112i,z2a+2i,又z1z2是纯虚数,解得:a1故答案为:1【点睛】本题考查了复数的概念和运算,属于基础题.14【解析】先求得的值,由此求得的值,再利用正弦定理求得的值.【详解】由于,所以,所以.由正弦定理得.故答案为:【点睛】本小题主要考查正弦定理解三角形,考查同角三角函数的基本关系式,考查两角和的正弦公式,考查三角形的内角和定理,属于中档题.

14、155【解析】先作出可行域,再做直线,平移,找到使直线在y轴上截距最小的点,代入即得。【详解】作出不等式组表示的平面区域,如图,令,则,作出直线,平移直线,由图可得,当直线经过C点时,直线在y轴上的截距最小,由,可得,因此的最小值为.故答案为:4【点睛】本题考查不含参数的线性规划问题,是基础题。16 【解析】首先由分段函数的解析式代入求值即可得到,分和两种情况讨论可得;【详解】解:因为,所以,当时,满足题意,;当时,由,解得.综合可知:满足的的取值范围为.故答案为:;.【点睛】本题考查分段函数的性质的应用,分类讨论思想,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

15、17 (1) (2) 当时,的取值范围为;当时,的取值范围为【解析】(1)当时,分类讨论把不等式化为等价不等式组,即可求解 (2)由绝对值的三角不等式,可得,当且仅当时,取“”,分类讨论,即可求解【详解】(1)当时,不等式可化为或或 ,解得不等式的解集为 (2)由绝对值的三角不等式,可得, 当且仅当时,取“”, 所以当时,的取值范围为;当时,的取值范围为【点睛】本题主要考查了含绝对值的不等式的求解,以及绝对值三角不等式的应用,其中解答中熟记含绝对值不等式的解法,以及合理应用绝对值的三角不等式是解答的关键,着重考查了推理与运算能力,属于基础题18(1)(2)【解析】(1)当时,将函数写成分段函数

16、,即可求得不等式的解集.(2)根据原命题是假命题,这命题的否定为真命题,即“,”为真命题,只需满足即可.【详解】解:(1)当时,由,得.故不等式的解集为.(2)因为“,”为假命题,所以“,”为真命题,所以.因为,所以,则,所以,即,解得,即的取值范围为.【点睛】本题考查绝对值不等式的解法,以及绝对值三角不等式,属于基础题.19(1)乙同学正确;(2).【解析】(1)根据变量且有线性负相关关系判断甲不正确.根据回归直线方程过样本中心点,判断出乙正确.(2)由线性回归方程得到的估计数据,计算出误差,求得“理想数据”的个数,由此利用古典概型概率计算公式,求得所求概率.【详解】(1)已知变量具有线性负

17、相关关系,故甲不正确,代入两个回归方程,验证乙同学正确,故回归方程为:(2)由(1)得到的回归方程,计算估计数据如下表:021212由上表可知,“理想数据”的个数为.用列举法可知,从个不同数据里抽出个不同数据的方法有种.从符合条件的个不同数据中抽出个,还要在不符合条件的个不同数据中抽出个的方法有种.故所求概率为【点睛】本小题主要考查回归直线方程的判断,考查古典概型概率计算,考查数据处理能力,属于中档题.20 (1);(2).【解析】试题分析:(1)设等差数列满的首项为,公差为,代入两等式可解。(2)由(1),代入得,所以通过裂项求和可求得。试题解析:(1)设等差数列的公差为,则由题意可得,解得.所以.(2)因为,所以.所以 .21(1);(2).【解析】(1)只需分,三种情况讨论即可;(2)在区间上恒成立,转化为,只需求出即可.【详解】(1)当时,此时不等式无解;当时,由得;当时,由得,综上,不等式的解集为;(2)依题意,在区间上恒成立,则,当时,;当时,所以当时,由得或,所以实数的取值范围为.【点睛】本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论