




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,要得到函数的图象,只需将的图象( )A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平
2、移个单位长度2已知l,m是两条不同的直线,m平面,则“”是“lm”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件3设等差数列的前项和为,若,则( )A23B25C28D294下列不等式正确的是( )ABCD5若函数在时取得极值,则( )ABCD6若不相等的非零实数,成等差数列,且,成等比数列,则( )ABC2D7设直线过点,且与圆:相切于点,那么( )AB3CD18设,则、的大小关系为( )ABCD9函数的图象大致是( )ABCD10已知函数,不等式对恒成立,则的取值范围为( )ABCD11设双曲线(a0,b0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交
3、于B,C两点,过B,C分别作AC,AB的垂线交于点D若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是 ( )ABCD12已知平面向量,则实数x的值等于( )A6B1CD二、填空题:本题共4小题,每小题5分,共20分。13已知向量,且,则_.14的三个内角A,B,C所对应的边分别为a,b,c,已知,则_.15已知平面向量,满足|1,|2,的夹角等于,且()()0,则|的取值范围是_16如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设椭圆的离心率为,左、右焦点分别为,点D
4、在椭圆C上, 的周长为.(1)求椭圆C的标准方程;(2)过圆上任意一点P作圆E的切线l,若l与椭圆C交于A,B两点,O为坐标原点,求证:为定值.18(12分)在三棱锥中,是边长为的正三角形,平面平面,M、N分别为、的中点.(1)证明:;(2)求三棱锥的体积.19(12分)已知是公比为的无穷等比数列,其前项和为,满足,_是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由从,这三个条件中任选一个,补充在上面问题中并作答20(12分)设函数,其中是自然对数的底数.()若在上存在两个极值点,求的取值范围;()若,函数与函数的图象交于,且线段的中点为,证明:.21(12分)已知椭圆:的离心率为
5、,左、右顶点分别为、,过左焦点的直线交椭圆于、两点(异于、两点),当直线垂直于轴时,四边形的面积为1(1)求椭圆的方程;(2)设直线、的交点为;试问的横坐标是否为定值?若是,求出定值;若不是,请说明理由22(10分)在平面直角坐标系xOy中,抛物线C:,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为().(1)求抛物线C的极坐标方程;(2)若抛物线C与直线l交于A,B两点,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】根据函数图像平移原则,即可容易求得结果.【详解】因为,故要得到,只需
6、将向左平移个单位长度.故选:A.【点睛】本题考查函数图像平移前后解析式的变化,属基础题.2A【解析】根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【详解】当m平面时,若l”则“lm”成立,即充分性成立,若lm,则l或l,即必要性不成立,则“l”是“lm”充分不必要条件,故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题3D【解析】由可求,再求公差,再求解即可.【详解】解:是等差数列,又,公差为,故选:D【点睛】考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题.4D【解析】根据,利用排除法,即可求解【
7、详解】由,可排除A、B、C选项,又由,所以故选D【点睛】本题主要考查了三角函数的图象与性质,以及对数的比较大小问题,其中解答熟记三角函数与对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题5D【解析】对函数求导,根据函数在时取得极值,得到,即可求出结果.【详解】因为,所以,又函数在时取得极值,所以,解得.故选D【点睛】本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型.6A【解析】由题意,可得,消去得,可得,继而得到,代入即得解【详解】由,成等差数列,所以,又,成等比数列,所以,消去得,所以,解得或,因为,是不相等的非零实数,所以,此时,所以故选:A【点睛】本题考查
8、了等差等比数列的综合应用,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.7B【解析】过点的直线与圆:相切于点,可得.因此,即可得出.【详解】由圆:配方为,半径.过点的直线与圆:相切于点,;故选:B.【点睛】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.8D【解析】因为,所以且在上单调递减,且 所以,所以,又因为,所以,所以.故选:D.【点睛】本题考查利用指对数函数的单调性比较指对数的大小,难度一般.除了可以直接利用单调性比较大小,还可以根据中间值“”比较大小.9B【解析】根据函数表达式,把分母设为新函数,首先计算函数定义域,然后求导,根据导函数的正负判断函数单调性,对应
9、函数图像得到答案.【详解】设,则的定义域为.,当,单增,当,单减,则.则在上单增,上单减,.选B.【点睛】本题考查了函数图像的判断,用到了换元的思想,简化了运算,同学们还可以用特殊值法等方法进行判断.10C【解析】确定函数为奇函数,且单调递减,不等式转化为,利用双勾函数单调性求最值得到答案.【详解】是奇函数,易知均为减函数,故且在上单调递减,不等式,即,结合函数的单调性可得,即,设,故单调递减,故,当,即时取最大值,所以.故选:.【点睛】本题考查了根据函数单调性和奇偶性解不等式,参数分离求最值是解题的关键.11A【解析】由题意,根据双曲线的对称性知在轴上,设,则由得:,因为到直线的距离小于,所
10、以,即,所以双曲线渐近线斜率,故选A12A【解析】根据向量平行的坐标表示即可求解.【详解】,即,故选:A【点睛】本题主要考查了向量平行的坐标运算,属于容易题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由向量平行的坐标表示得出,求解即可得出答案.【详解】因为,所以,解得.故答案为:【点睛】本题主要考查了由向量共线或平行求参数,属于基础题.14【解析】利用正弦定理边化角可得,从而可得,进而求解.【详解】由,由正弦定理可得,即,整理可得,又因为,所以,因为,所以,故答案为:【点睛】本题主要考查了正弦定理解三角形、两角和的正弦公式,属于基础题.15【解析】计算得到|,|cos1,解得
11、cos,根据三角函数的有界性计算范围得到答案.【详解】由()()0 可得 ()|cos12cos|cos1,为与的夹角再由 21+4+212cos7 可得|,|cos1,解得cos0,1cos1,1,即|+10,解得 |,故答案为【点睛】本题考查了向量模的范围,意在考查学生的计算能力,利用三角函数的有界性是解题的关键.16【解析】根据三视图知该几何体是三棱柱与半圆锥的组合体,结合图中数据求出它的体积【详解】根据三视图知,该几何体是三棱柱与半圆锥的组合体,如图所示:结合图中数据,计算它的体积为.故答案为:.【点睛】本题考查了根据三视图求简单组合体的体积应用问题,是基础题三、解答题:共70分。解答
12、应写出文字说明、证明过程或演算步骤。17(1)(2)见解析【解析】(1) 由,周长,解得,即可求得标准方程.(2)通过特殊情况的斜率不存在时,求得,再证明的斜率存在时,即可证得为定值.通过设直线的方程为与椭圆方程联立,借助韦达定理求得,利用直线与圆相切,即,求得的关系代入,化简即可证得即可证得结论.【详解】(1)由题意得,周长,且.联立解得,所以椭圆C的标准方程为.(2)当直线l的斜率不存在时,不妨设其方程为,则,所以,即.当直线l的斜率存在时,设其方程为,并设,由,由直线l与圆E相切,得.所以.从而,即.综合上述,得为定值.【点睛】本题考查了椭圆的标准方程,直线与椭圆的位置关系中定值问题,考
13、查了学生计算求解能力,难度较难.18(1)证明见解析;(2).【解析】(1)取 中点,连接,证明平面,由线面垂直的性质可得;(2)由,即可求得三棱锥的体积【详解】解:(1)证明:取中点D,连接,.因为,所以且,因为,平面,平面,所以平面.又平面,所以;(2)解:因为平面,平面,所以平面平面,过N作于E,则平面,因为平面平面,平面平面,平面,所以平面,又因为平面,所以,由于,所以所以,所以.【点睛】本题考查线面垂直,考查三棱锥体积的计算,解题的关键是掌握线面垂直的判定与性质,属于中档题19见解析【解析】选择或或,求出的值,然后利用等比数列的求和公式可得出关于的不等式,判断不等式是否存在符合条件的
14、正整数解,在有解的情况下,解出不等式,进而可得出结论.【详解】选择:因为,所以,所以令,即,所以使得的正整数的最小值为;选择:因为,所以,因为,所以不存在满足条件的正整数;选择:因为,所以,所以令,即,整理得当为偶数时,原不等式无解;当为奇数时,原不等式等价于,所以使得的正整数的最小值为【点睛】本题考查了等比数列的通项公式求和公式,考查了推理能力与计算能力,属于中档题20();()详见解析.【解析】()依题意在上存在两个极值点,等价于在有两个不等实根,由参变分类可得,令,利用导数研究的单调性、极值,从而得到参数的取值范围;()由题解得,要证成立,只需证:,即:,只需证:,设,即证:,再分别证明
15、,即可;【详解】解:()由题意可知,在上存在两个极值点,等价于在有两个不等实根,由可得,令,则,令,可得,当时,所以在上单调递减,且当时,单调递增;当时,单调递减;所以是的极大值也是最大值,又当,当大于0趋向与0,要使在有两个根,则,所以的取值范围为;()由题解得,要证成立,只需证:即:,只需证:设,即证:要证,只需证:令,则在上为增函数,即成立;要证,只需证明:令,则在上为减函数,即成立成立,所以成立.【点睛】本题考查利用导数研究函数的单调性、极值,利用导数证明不等式,属于难题;21(1)(2)是为定值,的横坐标为定值【解析】(1)根据“直线垂直于轴时,四边形的面积为1”列方程,由此求得,结合椭圆离心率以及,求得,由此求得椭圆方程.(2)设出直线的方程,联立直线的方程和椭圆方程,化简后写出根与系数关系.求得直线的方程,并求得两直线交点的横坐标,结合根与系数关系进行化简,求得的横坐标为定值.【详解】(1)依题意可知,解得,即;而,即,结合解得,因此椭圆方程为(2)由题意得,左焦点,设直线的方程为:,由消去并整理得,直线的方程为:,直线的方程为:联系方程,解得,又因为所以所以的横坐标为定值【点睛】本小题主要考查根据椭圆离心
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 票务代理地勤服务知识考核试卷
- 碳素材料在智能窗户中的功能实现考核试卷
- 出版业品牌建设与宣传推广考核试卷
- 数字出版物营销策略与应用考核试卷
- 矿产勘查中的勘查成果资料信息化考核试卷
- 油炸食品在快餐行业中的应用与市场竞争考核试卷
- 淡水养殖水体富营养化风险评估考核试卷
- 晋中师范高等专科学校《Python语言程序设计实验》2023-2024学年第二学期期末试卷
- 新疆塔城地区乌苏市2025年数学四年级第二学期期末联考试题含解析
- 山西医科大学晋祠学院《大学生精益创新创业实践》2023-2024学年第二学期期末试卷
- 【MOOC】固体物理学-北京交通大学 中国大学慕课MOOC答案
- 心衰病人的观察与护理
- 20241115某克缝纫机供应链计划IBP PPDS详细解决方案
- 爱护环境主题班会课件
- 大班游戏活动案例《快乐沙池》
- 糖尿病饮食指导护理
- DB41T 1633-2018 排油烟设施清洗服务规范
- 脑出血疑难病例讨论护理
- 连续梁线型控制技术交底
- 林业专业知识考试试题及答案
- 高三英语语法填空专项训练100(附答案)及解析
评论
0/150
提交评论