版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3 卡尔曼滤波方法3.1 卡尔曼滤波的特点及应用领域3.2 系统的状态空间描述3.3 卡尔曼滤波的直观推导3.4 卡尔曼滤波的递推运算方程3.5 卡尔曼滤波的结构图3.6 卡尔曼滤波的应用实例3.7 联邦卡尔曼滤波3.8 联邦卡尔曼滤波的应用实例3.9 Unscented卡尔曼滤波13.1 卡尔曼滤波的特点及应用领域卡尔曼滤波(Kalman Filtering)是1960年由R.E.Kalman首次提出的一种估计方法。之所以称为滤波,是因为它是一种排除随机干扰,提高检测精度的一种手段。KF是基于最小方差准则推导出来的一种线性滤波器。KF是一种时域递推算法,根据上一状态的估计值和当前状态的观测值
2、推出当前状态,不需存储大量的历史数据,便于计算机实现。KF要求明确已知系统模型。即在应用卡尔曼滤波之前,首先要建立系统模型和观测模型,并假定过程噪声、观测噪声为高斯白噪声。应用领域:机器人导航、目标跟踪、组合导航等。其中,组合导航是卡尔曼滤波最成功的应用领域。23.2 系统的状态空间描述连续系统模型:-状态方程-观测方程3系统的状态空间描述(续)43.3 卡尔曼滤波的直观推导 得预测测量估计偏差: 利用此偏差修正预测估计:待定校正增益阵5卡尔曼滤波的直观推导(续) 增益阵的求法: 定义:63.4 卡尔曼滤波的递推运算方程状态预测方差预测增益矩阵状态估值方差估值时间更新/预测测量更新/修正初始条
3、件新息序列73.5 卡尔曼滤波的结构图延时一步+-+当前估计值上一步估计值一步预测 上述递推公式,称为卡尔曼滤波器。实际上,卡尔曼滤波器也是一个系统,其结构框图如下:83.6 卡尔曼滤波的应用实例(舰船导航)状态变量1、系统模型 卡尔曼滤波最成功的工程应用是设计运载体的高精度组合导航系统。下面以舰船导航问题为例,介绍其具体应用。式中,9 为独立的零均值高斯白噪声, b为海流相关时间常数。状态方程观测方程 量测系统由GPS和航位推算系统(DR)组成,GPS输出舰船的经纬度和。 DR由罗经和计程仪组成,分别输出航向K和船相对于水流的速度S。102、初始条件和参数选取113、仿真结果(a)123、仿
4、真结果(b)133、仿真结果(c)143.7 联邦卡尔曼滤波卡尔曼滤波最成功的工程应用是设计运载体的高精度组合导航系统。为了与联邦滤波方法相区别,将普通的卡尔曼滤波称为集中卡尔曼滤波。由于对导航精度要求的提高,导航设备越来越多。另一方面,现代系统向大系统和复杂系统的方向发展。这种情况下采用集中式卡尔曼实现组合导航,存在两个问题:计算负担重。滤波器计算量以状态维数的三次方剧增,无法满足导航的实时性要求;容错性能差,不利于故障诊断。当任一导航子系统发生故障,且没有及时检测出并隔离时,则整个导航系统都会被污染,使输出的信息不可靠。为解决上述问题,出现了分散化滤波的思想和方法。其中, Carlson在
5、1988年提出的联邦滤波由于设计灵活、计算量小、容错性好而受到重视,已被美国空军确定为新一代导航系统的通用滤波器。15 联邦滤波器示意图子滤波器1状态估计1主滤波器信息融合信息分配全局状态估计子滤波器2子滤波器n状态估计2状态估计n16 方法思想在诸多非相似导航子系统中选择导航信息全面、输出速率高、可靠性好的子系统(如惯性导航系统)与其余导航子系统两两结合,形成若干子滤波器。各子滤波器并行运行,获得建立在局部量测基础上的局部最优估计。各局部最优估计在第二级滤波器(即主滤波器)内按融合算法合成,获得建立在所有量测基础上的全局估计。全局估计再按信息守恒原则反馈给各子滤波器。如此反复递推。实际设计的
6、联邦滤波器是全局次优的,但是对于自主性要求很高的重要运载体来说,导航系统的可靠性比精度更重要。采用联邦滤波器设计组合导航系统,虽然损失了少许精度,但得到的是组合导航系统的强容错能力。17 联邦滤波器算法信息融合其中, 为 N 个不相关的局部状态估计, 为相应的估计误差协方差 。 对于来自各子滤波器信息(状态估计值和误差方差估计),在主滤波器按以下规则进行融合:18信息分配其中, 为信息分配系数, 为主滤波器的信息分配系数,满足守恒原则 在进入下一次递推之前,需将主滤波器中的信息(状态、方差)在各子滤波器中按如下规则进行分配: 联邦滤波器算法19 联邦卡尔曼滤波器结构信息分配卡尔曼滤波信息融合联
7、邦卡尔曼滤波器20 联邦卡尔曼滤波器结构图 注:组合导航中,一般选择可靠性好的系统作为参考系统,如惯性导航系统。21联邦卡尔曼滤波器的应用时间/s经度弧长估计误差/m 仍然以舰船导航为例,模型与前面相同。为了与集中卡尔曼滤波器的效果相比较,同时采用两种滤波器滤波。维度弧长估计误差/m时间/s22联邦卡尔曼滤波器的应用(续) 图中可以看出,联邦卡尔曼滤波与集中卡尔曼滤波算法的估计精度相当,但联邦卡尔曼滤波相对于集中卡尔曼滤波,不仅有更好的容错性,而且可以并行运算。海流北向速度分量估计误差/(m/s)时间/s海流东向速度分量估计误差/(m/s)时间/s233.9 Unscented卡尔曼滤波 UK
8、F方法的建立是基于如下的事实:逼近任意的分布比逼近它的任何非线性函数更容易。UKF的基础是Unscented变换(Unscented Transformation, UT),其基本思想是用一组确定的离散采样点(称为Sigma点)来近似状态变量的分布。UKF假定状态满足高斯分布,因此只需逼近其均值和方差。 对于如下的非线性变换:假设已知n维随机向量 x 的均值 和协方差 ,则对上述非线性系统进行滤波的目的是计算 y 的均值 和 方差 。- (3-1)241. 构造 Sigma 点为可调尺度参数,调整它可以提高逼近精度。2. 利用Sigma点进行非线性传播 将上面构造的Sigma点直接按照(3-1)的关系作非线性变换,则产生一组变换样本点25Unscented卡尔曼滤波(续)变换样本点Yi 即可近似表示 y 的分布。下面利用 Yi 来计算 y的均值和方差。3. 计算 y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2021年黑龙江省大兴安岭地区公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2022年广东省清远市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2024年四川省遂宁市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2022年福建省漳州市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2022年广西壮族自治区梧州市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2024年医用导管项目资金申请报告代可行性研究报告
- 广东省珠海市(2024年-2025年小学六年级语文)统编版随堂测试(下学期)试卷及答案
- 《戒烟治疗与COPD》课件
- 2024情侣共同应对家庭矛盾与沟通障碍解决方案协议合同3篇
- 2024年肉牛养殖场租赁与电商销售合作协议2篇
- DB23T 1727-2016 地理标志产品 克东天然苏打水
- 水电站施工合同水电站施工合同(2024版)
- 渭南市白水县2021-2022学年七年级上学期期末考试数学试卷【带答案】
- 2024时事政治必考试题库附答案(满分必刷)
- DZ∕T 0289-2015 区域生态地球化学评价规范(正式版)
- 公司年会小品《老同学显摆大会》台词剧本手稿
- 护士条例课件
- 工程造价毕业设计总结报告
- 结肠镜检查前肠道准备
- 2023-2024学年统编版高中语文选择性必修中册《屈原列传》检测卷(含答案)
- 创业基础知识竞赛题库及答案
评论
0/150
提交评论