全等三角形判定与_第1页
全等三角形判定与_第2页
全等三角形判定与_第3页
全等三角形判定与_第4页
全等三角形判定与_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、关于全等三角形判定和第一张,PPT共二十八页,创作于2022年6月两边和它们的夹角对应相等的两个三角形全等(SAS)两角一边呢复习回顾: 我们前面学习了哪几种判定三角形全等的方法SASSSS第二张,PPT共二十八页,创作于2022年6月继续探讨三角形全等的条件:两角一边思考:已知一个三角形的两个角和一条边,那么两个角与这条边的位置上有几种可能性呢?ABCABC图1图2在图1中, 边AB是A与B的夹边,在图2中, 边BC是A的对边, 我们称这种位置关系为两角夹边 我们称这种位置关系为两角及其中一角的对边。第三张,PPT共二十八页,创作于2022年6月 二、合作探究 (一)探究一:已知两个角和一条

2、线段,以这两个角为内角,以这条线段为这两个角的夹边,画一个三角形 把你画的三角形与小组其他组员画的三角形进行比较,所有的三角形都全等吗?都全等45303 cm 换两个角和一条线段,试试看,是否有同样的结论第四张,PPT共二十八页,创作于2022年6月如何用符号语言来表达呢?证明:在ABC与A B C 中A=A AB=A BABCABC(ASA)ACBACBB=B两角和它们的夹边分别相等的两个三角形全等(ASA).第五张,PPT共二十八页,创作于2022年6月在ABC和DEF中, A=D, B=E,BC=EF, ABC和DEF全等吗?为什么?ACBEDF探索分析:能否转化为ASA?证明: A=D

3、, B=E(已知) C=F(三角形内角和定理) B=E 在ABC和DEF中BC=EF C=FABCDEF(ASA)你能从上题中得到什么结论?两角及一角的对边对应相等的两个三角形全等(AAS)。第六张,PPT共二十八页,创作于2022年6月如何用符号语言来表达呢?证明:在ABC与A B C 中A=AABCABC(AAS)ACBACBB=BBC=B C第七张,PPT共二十八页,创作于2022年6月判定3: 两角和它们的夹边分别相等的两个三角形全等,简写成“角边角”或“ASA”。判定4: 两角和其中一角的对边分别相等的两个三角形全等,简写成“角角边”或“AAS”(ASA)(AAS)归纳第八张,PPT

4、共二十八页,创作于2022年6月判定三角形全等你有哪些方法?(ASA)(AAS)(SAS)(SSS)第九张,PPT共二十八页,创作于2022年6月下列条件能否判定ABCDEF.(1)A=E AB=EF B=D(2)A=D AB=DE B=E试一试请先画图试试看第十张,PPT共二十八页,创作于2022年6月如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗? 如果可以,带哪块去合适?你能说明其中理由吗?解决玻璃问题怎么办?可以帮帮我吗?AB利用“角边角定理”可知,带B 块去,可以配到一个与原来全等的三角形玻璃。第十一张,PPT共二十

5、八页,创作于2022年6月考考你1、如图,已知AB=DE, A =D, ,B=E,则ABC DEF的理由是:2、如图,已知AB=DE ,A=D,,C=F,则ABC DEF的理由是:ABCDEF角边角(ASA)角角边(AAS)第十二张,PPT共二十八页,创作于2022年6月例1 、如图 ,AB=AC,B=C,那么ABE和ACD全等吗?为什么?证明: 在ABE与ACD中 B=C (已知) AB=AC (已知) A= A (公共角) ABE ACD (ASA) AEDCB第十三张,PPT共二十八页,创作于2022年6月1.如图,AD=AE,B=C,那么BE和CD相等么?为什么?证明:在ABE与ACD

6、中 B=C (已知) A= A (公共角) AE=AD (已知) ABE ACD(AAS) BE=CD (全等三角形对应边相等)AEDCB变一变BE=CD你还能得出其他什么结论?O第十四张,PPT共二十八页,创作于2022年6月 例2. 如图,O是AB的中点, = , 与 全等吗? 为什么?两角和夹边对应相等第十五张,PPT共二十八页,创作于2022年6月ABCDO1234 如图:已知ABC=DCB,3=4,求证: (1)ABCDCB。(2)1=2例3第十六张,PPT共二十八页,创作于2022年6月练习1 已知:如图,AB=A C ,A=A,B=C 求证:ABE A CD _ ( )_ ( )

7、_ ( ) 证明:在 和 中_( ) A=A 已知AB=AC 已知B=C 已知ABE ACD ASA ABE ACD第十七张,PPT共二十八页,创作于2022年6月1、如图:已知ABDE,ACDF,BE=CF。求证:ABCDEF。ABCDEF考考你证明: BE=CF(已知) BC=EF(等式性质) B=E 在ABC和DEF中BC=EF C=FABCDEF(ASA) ABDE ACDF (已知) B=DEF , ACB=F第十八张,PPT共二十八页,创作于2022年6月ABCDEF1、如图ACB=DFE,BC=EF,那么应补充一个条件 - ,才能使ABCDEF (写出一个即可)。B=E或A=D或

8、 AC=DF你能行吗?(ASA)(AAS)(SAS)AB=DE可以吗?ABDE第十九张,PPT共二十八页,创作于2022年6月A=D (已知 ) AB=DE(已知 )B=E(已知 )在ABC和DEF中 ABCDEF(ASA) 有两角和它们夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”)。用符号语言表达为:FEDCBA 三角形全等判定方法3知识梳理:第二十张,PPT共二十八页,创作于2022年6月知识梳理: 思考:在ABC和DFE中,当A=D , C=F和AB=DE时,能否得到 ABCDFE? 三角形全等判定方法4 有两角和其中一个角的对边对应相等的两个三角形全等(可以 简写成“

9、角边角”或“AAS”)。第二十一张,PPT共二十八页,创作于2022年6月小结(1) 两角和它们的夹边对应相等的两个三角形全等. 简写成“角边角”或“ASA”.(2) 两角和其中一角的对边对应相等的两个三角形全等.简写成“角角边”或“AAS”.知识要点:(3)探索三角形全等是证明线段相等(对应边相等), 角相等(对应角相等)等问题的基本途径。数学思想:要学会用分类的思想,转化的思想解决问题。第二十二张,PPT共二十八页,创作于2022年6月1、如图,BE=CD,1=2,则AB=AC.请说明理由。CAB12ED拓展与提高第二十三张,PPT共二十八页,创作于2022年6月2 已知 和 中, = ,

10、AB=AC.求证: (1) (3) BD=CE证明: ,ACDABEDDQ中和在(2) AE=AD (全等三角形对应边相等)ACAB=Q(已知)(已知)(公共角)(等式的性质)第二十四张,PPT共二十八页,创作于2022年6月第二十五张,PPT共二十八页,创作于2022年6月ABCDE124、如图,已知CE,12,ABAD,ABC和ADE全等吗?为什么?解: ABC和ADE全等。12(已知)1DAC2DAC即BACDAE在ABC和ADC 中 ABCADE(AAS)第二十六张,PPT共二十八页,创作于2022年6月DCBA5、在ABC中,AB=AC,AD是边BC上的中线,证明:BAD=CAD证明:AD是BC边上的中线BDCD(三角形中线的定义)在ABD和ACD中 ABDACD(SSS) BAD=CAB(全等三角形对应角相等)AD是BAC的角平分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论