开题报告-光学相干断层图像中基于Hessian矩阵的血管检测_第1页
开题报告-光学相干断层图像中基于Hessian矩阵的血管检测_第2页
开题报告-光学相干断层图像中基于Hessian矩阵的血管检测_第3页
开题报告-光学相干断层图像中基于Hessian矩阵的血管检测_第4页
开题报告-光学相干断层图像中基于Hessian矩阵的血管检测_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、光学相干断层图像中基于Hessian 矩阵的血管检测开题报告1.选题的背景与意义视网膜图像的评估被广泛运用到医学诊断以及生物特征识别系统中。 其中,视网膜血管的直径变化、分叉角度以及血管弯曲程度都是诊断眼底病变的重要指标。 同时,血管增强也是血管分割、图像配准和三维可视化等后续处理的重要前提。 因此,血管增强作为眼底图像处理的关键技术具有重要意义。血管增强的目的是强调眼底图像中的血管结构,同时抑制非重要的特征,从而加强图像判读和识别。 图像增强方法可分为基于空域的算法和基于频域的算法两大类。 前者直接对图像灰度级做计算,后者基于图像变换域对变换系数进行修正。考虑到 Hessian 矩阵在检测曲

2、线结构上表现出的良好性能,在研究眼底图像特征的基础上,提出了一种基于 Hessian 矩阵的多尺度血管增强方法,与其他多种血管增强方法相比,可达到相当的准确率,且在同等准确率下能得到较高的鲁棒性。2. Hessian 矩阵的应用原理 Hessian 方法是一种用高阶微分提取图像特征方向的方法。Hessian 方法认为,具有最大模的特征向量的方向是垂直于图像特征方向的,与它垂直的方向被认为是平行于图像特征方向的。 对于由高斯函数构造的线性模型,可以用与直线正交的绝对值较大的二阶导数、沿线方向的绝对值很小的二阶导数来表示,这恰好是二维 Hessian 矩阵的两个特征值所代表的几何意义。 将 Hes

3、sian 矩阵的该性质应用到血管检测,通过设计线状增强滤波函数,将视网膜图像中的噪声( 如晶体杂质、成像设备引起的伪迹) 去除,从而检测和增强视网膜血管。Hessian 矩阵用于检测和分析特定形状已应用于多个文献同时也被用于医学图像中的曲线结构的分割和重建中。 对于二维输入图像,我们用它的二阶偏导数来构造每一个像素 ( x ,y) 的 Hessian 矩阵: 其中 fxx、fxy 、fyx 、fyy 分别表示二维图像 f( x,y) 的四个二阶偏微分:由于 fxy = fyx ,H是实对称矩阵,因此可用两个特征值1 、 2 来构造增强滤波。 在二维图像空间中,Hessian 矩阵的两个特征值1

4、 、2 可以由下面公式计算出:图像处理中主要用 Hessian 矩阵的特征值来判断图像上的点是否为角点,所谓角点是指图像中密度变化剧烈的点。因此,可以使用 Hessian 矩阵的特征值来检测血管边缘,视网膜血管的强度和方向即可由 Hessian 矩阵的特征值和特征向量表示。由于视网膜血管的直径存在变化,不适合使用单一尺度的增强效果,本文采用高斯函数构造多尺度增强滤波器,采用不同尺度进行增强滤波。 根据 Hessian 矩阵的定义:将 Hessian 矩阵的差分运算与高斯函数结合,通过改变高斯函数的标准偏移量来获得不同尺度下的线形增强滤波。 根据高斯函数的卷积性质,尺度空间导数 Iab 由输入图

5、像与高斯滤波器的二阶导的卷积得到: 高斯函数表达式为:是高斯滤波器的标准差,为空间尺度因子。根据高斯函数构造的线形模型特点,血管横切方向上的二阶导数绝对值较大,而沿线方向的二阶导数较小,由于我们增强的是暗背景下的亮点,因此,设 H 的两个特征值1 和2 满足关系式| 1 | | 2 | ,定义二维线形滤波器如下:对于线形结构元素,当尺度因子与血管的实际宽度最匹配时,此滤波器的输出最大。 通过迭代尺度因子,得到不同尺度下的 zline 值,取最大的 zline 作为该点的实际输出:3.研究方法和目标1)方法将三维图像投影到一个平面,形成二维图像,输入二维图像,生成图像矩阵I,选择尺度因子,计算元

6、素 Iij 与高斯函数二阶微分的卷积,生成 Hessian 矩阵 H,并计算特征值1 和2 。计算增强滤波的输出值 zx。改变的值,重复上述步骤,输出最大增强滤波输出值 zmax,作为该元素的增强因子。将当前元素的增强因子乘以平滑尺度ij ,作为该元素的输出。最后输出增强图像。2)目标通过迭代,对不同尺寸的血管图像进行增强,增强对比度,抑制图像背景和噪声。在完成二维图像的基础上,尝试实现三维图像的增强。4、工作进度与安排设计(论文)各阶段任务起 止 日 期1查资料,看书完成开题报告及准备工作3.1-3.112熟悉开发环境与开发过程3.11-3.233编程、调试,初步实现设计要求3.24-4.204修改,完成设计4.21-5.105完成毕业论文及答辩5.11-5.275参考文献1 Multiscale Vessel Enhancement Filtering Alejandro F. Frangi, Wiro J. Niessen, Koen L. Vincken, Max A. Viergever Image Sciences Insti

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论