版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、图形的展开与叠折一、选择题1. ( 2014安徽省,第8题4分)如图,RtABC中,AB=9,BC=6,B=90,将ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A BC4D5考点:翻折变换(折叠问题)分析:设BN=x,则由折叠的性质可得DN=AN=9x,根据中点的定义可得BD=3,在RtABC中,根据勾股定理可得关于x的方程,解方程即可求解解答:解:设BN=x,由折叠的性质可得DN=AN=9x,D是BC的中点,BD=3,在RtABC中,x2+32=(9x)2,解得x=4故线段BN的长为4故选:C点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及
2、方程思想,综合性较强,但是难度不大2.(2014年广东汕尾,第9题4分)如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A我B中C国D梦分析:利用正方体及其表面展开图的特点解题解:这是一个正方体的平面展开图,共有六个面,其中面“我”与面“中”相对,面“的”与面“国”相对,“你”与面“梦”相对故选D点评:本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题3(2014浙江宁波,第3题4分)用矩形纸片折出直角的平分线,下列折法正确的是( )ABCD考点:翻折变换(折叠问题)分析:根据图形翻折变换的性质及角平分线的定义对各选项进行逐一判
3、断解答:解:A当长方形如A所示对折时,其重叠部分两角的和一个顶点处小于90,另一顶点处大于90,故本选项错误;B当如B所示折叠时,其重叠部分两角的和小于90,故本选项错误;C当如C所示折叠时,折痕不经过长方形任何一角的顶点,所以不可能是角的平分线,故本选项错误;D当如D所示折叠时,两角的和是90,由折叠的性质可知其折痕必是其角的平分线,正确故选:D点评:本题考查的是角平分线的定义及图形折叠的性质,熟知图形折叠的性质是解答此题的关键 4(2014浙江宁波,第10题4分)如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥如图是一个四棱柱和一个六棱锥,它们各有1
4、2条棱下列棱柱中和九棱锥的棱数相等的是( )A五棱柱B六棱柱C七棱柱D八棱柱考点:认识立体图形分析:根据棱锥的特点可得九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,然后分析四个选项中的棱柱棱的条数可得答案解答:解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故此选项错误;B、六棱柱共18条棱,故此选项正确;C、七棱柱共21条棱,故此选项错误;D、九棱柱共27条棱,故此选项错误;故选:B点评:此题主要考查了认识立体图形,关键是掌握棱柱和棱锥的形状 5.(2014菏泽,第5题3分)过正方体中有公共顶点的三条棱的中点切出一个平面,形成如
5、图几何体,其正确展开图为( )ABCD考点:几何体的展开图;截一个几何体分析:由平面图形的折叠及立体图形的表面展开图的特点解题解答:解:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合故选B点评:考查了截一个几何体和几何体的展开图解决此类问题,要充分考虑带有各种符号的面的特点及位置二.填空题1. ( 2014福建泉州,第17题4分)如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90的最大扇形ABC,则:(1)AB的长为1米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为米考点:圆锥的计算;圆
6、周角定理专题:计算题分析:(1)根据圆周角定理由BAC=90得BC为O的直径,即BC=,根据等腰直角三角形的性质得AB=1;(2)由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,则2r=,然后解方程即可解答:解:(1)BAC=90,BC为O的直径,即BC=,AB=BC=1;(2)设所得圆锥的底面圆的半径为r,根据题意得2r=,解得r=故答案为1,点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长也考查了圆周角定理2.(2014毕节地区,第20题5分)如图,在RtABC中,ABC=90,AB=3,AC=5,点E在BC
7、上,将ABC沿AE折叠,使点B落在AC边上的点B处,则BE的长为 考点:翻折变换(折叠问题)分析:利用勾股定理求出BC=4,设BE=x,则CE=4x,在RtBEC中,利用勾股定理解出x的值即可解答:解:BC=4,由折叠的性质得:BE=BE,AB=AB,设BE=x,则BE=x,CE=4x,BC=ACAB=ACAB=2,在RtBEC中,BE2+BC2=EC2,即x2+22=(4x)2,解得:x=故答案为:点评:本题考查了翻折变换的知识,解答本题的关键是掌握翻折变换的性质及勾股定理的表达式3.(2014云南昆明,第14题3分)如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕
8、为FH,点C落在Q处,EQ与BC交于点G,则EBG的周长是 cm考点:折叠、勾股定理、三角形相似分析:根据折叠性质可得,先由勾股定理求出AF、EF的长度,再根据可求出EG、BG的长度解答:解:根据折叠性质可得,设则,在RtAEF中,即,解得:,所以根据,可得,即,所以,所以EBG的周长为3+4+5=12。故填12点评:本题考查了折叠的性质,勾股定理的运用及三角形相似问题.4. (2014年江苏南京,第14题,2分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形, 若圆锥的底面圆的半径r=2cm,扇形的圆心角=120,则该圆锥的母线长l为cm (第1题图)考点:圆锥的计算分析:易得圆锥的底面
9、周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长解答:圆锥的底面周长=22=4cm,设圆锥的母线长为R,则:=4,解得R=6故答案为:6点评:本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:5. (2014扬州,第14题,3分)如图,ABC的中位线DE=5cm,把ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则ABC的面积为40cm3(第2题图)考点:翻折变换(折叠问题);三角形中位线定理分析:根据对称轴垂直平分对应点连线,可得AF即是ABC的高,再由中位线的性质求出BC,继而可得ABC的面积解答:解:DE是
10、ABC的中位线,DEBC,BC=2DE=10cm;由折叠的性质可得:AFDE,AFBC,SABC=BCAF=108=40cm2故答案为:40点评:本题考查了翻折变换的性质及三角形的中位线定理,解答本题的关键是得出AF是ABC的高三.解答题1. (2014湘潭,第20题)如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6(1)求证:EDFCBF;(2)求EBC(第1题图)考点:翻折变换(折叠问题);全等三角形的判定与性质;矩形的性质分析:(1)首先根据矩形的性质和折叠的性质可得DE=BC,E=C=90,对顶角DFE=BFC,利用AAS可判定DEFBCF;(2)
11、在RtABD中,根据AD=3,BD=6,可得出ABD=30,然后利用折叠的性质可得DBE=30,继而可求得EBC的度数解答:(1)证明:由折叠的性质可得:DE=BC,E=C=90,在DEF和BCF中,DEFBCF(AAS);(2)解:在RtABD中,AD=3,BD=6,ABD=30,由折叠的性质可得;DBE=ABD=30,EBC=903030=30点评:本题考查了折叠的性质、矩形的性质,以及全等三角形的判定与性质,正确证明三角形全等是关键图形的展开与叠折1. (2014上海,第18题4分)如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边
12、BC下方的点C、D处,且点C、D、B在同一条直线上,折痕与边AD交于点F,DF与BE交于点G设AB=t,那么EFG的周长为2t(用含t的代数式表示)考点:翻折变换(折叠问题)分析:根据翻折的性质可得CE=CE,再根据直角三角形30角所对的直角边等于斜边的一半判断出EBC=30,然后求出BGD=60,根据对顶角相等可得FGE=BGD=60,根据两直线平行,内错角相等可得AFG=FGE,再求出EFG=60,然后判断出EFG是等边三角形,根据等边三角形的性质表示出EF,即可得解解答:解:由翻折的性质得,CE=CE,BE=2CE,BE=2CE,又C=C=90,EBC=30,FDC=D=90,BGD=6
13、0,FGE=BGD=60,ADBC,AFG=FGE=60,EFG=(180AFG)=(18060)=60,EFG是等边三角形,AB=t,EF=t=t,EFG的周长=3t=2t故答案为:2t点评:本题考查了翻折变换的性质,直角三角形30角所对的直角边等于斜边的一半,等边三角形的判定与性质,熟记性质并判断出EFG是等边三角形是解题的关键2. (2014山东威海,第17题3分)如图,有一直角三角形纸片ABC,边BC=6,AB=10,ACB=90,将该直角三角形纸片沿DE折叠,使点A与点C重合,则四边形DBCE的周长为 18 考点:翻折变换(折叠问题)分析:先由折叠的性质得AE=CE,AD=CD,DC
14、E=A,进而得出,B=BCD,求得BD=CD=AD=5,DE为ABC的中位线,得到DE的长,再在RtABC中,由勾股定理得到AC=8,即可得四边形DBCE的周长解答:解:沿DE折叠,使点A与点C重合,AE=CE,AD=CD,DCE=A,BCD=90DCE,又B=90A,B=BCD,BD=CD=AD=5,DE为ABC的中位线,DE=3,BC=6,AB=10,ACB=90,四边形DBCE的周长为:BD+DE+CE+BC=5+3+4+6=18故答案为:18点评:本题主要考查了折叠问题和勾股定理的综合运用本题中得到ED是ABC的中位线关键3. (2014山东枣庄,第17题4分)如图,将矩形ABCD沿C
15、E向上折叠,使点B落在AD边上的点F处若AE=BE,则长AD与宽AB的比值是 考点:翻折变换(折叠问题)分析:由AE=BE,可设AE=2k,则BE=3k,AB=5k由四边形ABCD是矩形,可得A=ABC=D=90,CD=AB=5k,AD=BC由折叠的性质可得EFC=B=90,EF=EB=3k,CF=BC,由同角的余角相等,即可得DCF=AFE在RtAEF中,根据勾股定理求出AF=k,由cosAFE=cosDCF得出CF=3k,即AD=3k,进而求解即可解答:解:AE=BE,设AE=2k,则BE=3k,AB=5k四边形ABCD是矩形,A=ABC=D=90,CD=AB=5k,AD=BC将矩形ABC
16、D沿CE向上折叠,使点B落在AD边上的点F处,EFC=B=90,EF=EB=3k,CF=BC,AFE+DFC=90,DFC+FCD=90,DCF=AFE,cosAFE=cosDCF在RtAEF中,A=90,AE=2k,EF=3k,AF=k,=,即=,CF=3k,AD=BC=CF=3k,长AD与宽AB的比值是=故答案为点评:此题考查了折叠的性质,矩形的性质,勾股定理以及三角函数的定义解此题的关键是数形结合思想与转化思想的应用4. (2014山东潍坊,第18题3分)我国古代有这样一道数学问题:“枯木一根直立地上高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯
17、木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处则问题中葛藤的最短长度是_尺考点:平面展开最短路径问题;勾股定理的应用分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出解答:解:如图,一条直角边(即木棍的高)长20尺,另一条直角边长53=15(尺),因此葛藤长=25(尺)故答案为:25点评:本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解5. (2014山东聊城,第15题,3
18、分)如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100,扇形的圆心角为120,这个扇形的面积为300考点:圆锥的计算;扇形面积的计算分析:首先根据底面圆的面积求得底面的半径,然后结合弧长公式求得扇形的半径,然后利用扇形的面积公式求得侧面积即可解答:解:底面圆的面积为100,底面圆的半径为10,扇形的弧长等于圆的周长为20,设扇形的母线长为r,则=20,解得:母线长为30,扇形的面积为rl=1030=300,故答案为:300点评:本题考查了圆锥的计算及扇形的面积的计算,解题的关键是牢记计算公式6. (2014江苏徐州,第16题3分)如图,在等腰三角形纸片ABC中,AB=AC,A=5
19、0,折叠该纸片,使点A落在点B处,折痕为DE,则CBE=15考点:等腰三角形的性质;翻折变换(折叠问题)菁优网分析:由AB=AC,A=50,根据等边对等角及三角形内角和定理,可求得ABC的度数,又由折叠的性质,求得ABE的度数,继而求得CBE的度数解答:解:AB=AC,A=50,ACB=ABC=(18050)=65,将ABC折叠,使点A落在点B处,折痕为DE,A=50,ABE=A=50,CBE=ABCABE=6550=15故答案为:15点评:此题考查了折叠的性质、等腰三角形的性质及三角形内角和定理此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用图形的展开与叠折一选择题1、(
20、2014河北,第8题3分)如图,将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n()A2B3C4D5考点:图形的剪拼分析:利用矩形的性质以及正方形的性质,结合勾股定理得出分割方法即可解答:解:如图所示:将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n可以为:3,4,5,故n2故选:A点评:此题主要考查了图形的剪拼,得出正方形的边长是解题关键2、(2014河北,第10题3分)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A0B1CD考点:展开图折叠成几何体分析:根据展开图折叠成
21、几何体,可得正方体,根据勾股定理,可得答案解答:解;AB是正方体的边长,AB=1,故选:B点评:本题考查了展开图折叠成几何体,勾股定理是解题关键3、(2014无锡,第6题3分)已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A20cm2B20cm2C40cm2D40cm2考点:圆锥的计算分析:圆锥的侧面积=底面周长母线长2,把相应数值代入即可求解解答:解:圆锥的侧面积=2452=20故选A点评:本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长4(2014黔南州,第13题4分)如图,把矩形纸片ABCD沿对角线BD折叠,
22、设重叠部分为EBD,则下列说法错误的是()AAB=CDBBAE=DCECEB=EDDABE一定等于30考点:翻折变换(折叠问题)分析:根据ABCD为矩形,所以BAE=DCE,AB=CD,再由对顶角相等可得AEB=CED,所以AEBCED,就可以得出BE=DE,由此判断即可解答:解:四边形ABCD为矩形BAE=DCE,AB=CD,故A、B选项正确;在AEB和CED中,AEBCED(AAS),BE=DE,故C正确;得不出ABE=EBD,ABE不一定等于30,故D错误故选:D点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变
23、5 (2014年广西南宁,第8题3分)如图所示,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是()A正三角形B正方形C正五边形D正六边形考点:剪纸问题.专题:操作型分析:先求出O=60,再根据直角三角形两锐角互余沿折痕展开依次进行判断即可得解解答:解:平角AOB三等分,O=60,9060=30,剪出的直角三角形沿折痕展开一次得到底角是30的等腰三角形,再沿另一折痕展开得到有一个角是30的直角三角形,最后沿折痕AB展开得到等边三角形,即正三角形
24、故选A点评:本题考查了剪纸问题,难点在于根据折痕逐层展开,动手操作会更简便6(2014莱芜,第9题3分)一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()ARBCD考点:圆锥的计算.分析:根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长,然后表示出圆锥的高即可解答:解:圆锥的底面周长是:R;设圆锥的底面半径是r,则2r=R解得:r=R由勾股定理得到圆锥的高为=,故选D点评:本题考查了圆锥的计算,正确理解理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长7 (2014青岛,第7题3分)如图
25、,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C上若AB=6,BC=9,则BF的长为()A4B3C4.5D5考点:翻折变换(折叠问题).分析:先求出BC,再由图形折叠特性知,CF=CF=BCBF=9BF,在直角三角形CBF中,运用勾股定理BF2+BC2=CF2求解解答:解:点C是AB边的中点,AB=6,BC=3,由图形折叠特性知,CF=CF=BCBF=9BF,在直角三角形CBF中,BF2+BC2=CF2,BF2+9=(9BF)2,解得,BF=4,故选:A点评:本题考查了折叠问题及勾股定理的应用,综合能力要求较高同时也考查了列方程求解的能力解题的关键是找出线段的关系8(2014黑龙江牡
26、丹江, 第7题3分)已知:如图,在RtABC中,ACB=90,AB,CM是斜边AB上的中线,将ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么A的度数是()第1题图A30B40C50D60考点:翻折变换(折叠问题)分析:根据折叠的性质可知,折叠前后的两个三角形全等,则D=A,MCD=MCA,从而求得答案解答:解:在RtABC中,ACB=90,AB,CM是斜边AB上的中线,AM=MC=BM,A=MCA,将ACM沿直线CM折叠,点A落在点D处,CM平分ACD,A=D,ACM=MCD,A+B=B+BCD=90A=BCDBCD=DCM=MCA=30A=30故选:A点评:本题考查图形的
27、折叠变化及三角形的内角和定理关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化9二、填空题1、(2014随州,第15题3分)圆锥的底面半径是2cm,母线长6cm,则这个圆锥侧面展开图的扇形圆心角度数为120度考点:圆锥的计算分析:根据展开图的扇形的弧长等于圆锥底面周长计算解答:解:圆锥的底面半径是2cm,圆锥的底面周长为4,设圆心角为n,根据题意得:=4,解得n=120故答案为:120点评:考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长本题就是把的扇形的弧长等于圆锥底面周长作为相等关
28、系,列方程求解2 (2014年贵州安顺,第16题4分)如图,矩形ABCD沿着直线BD折叠,使点C落在C处,BC交AD于点E,AD=8,AB=4,则DE的长为5考点:翻折变换(折叠问题).分析:设DE=x,则AE=8x根据折叠的性质和平行线的性质,得EBD=CBD=EDB,则BE=DE=x,根据勾股定理即可求解解答:解:设DE=x,则AE=8x根据折叠的性质,得EBD=CBDADBC,CBD=ADBEBD=EDBBE=DE=x在直角三角形ABE中,根据勾股定理,得x2=(8x)2+16x=5即DE=5点评:此题主要是运用了折叠的性质、平行线的性质、等角对等边的性质和勾股定理3(2014广西来宾,
29、第15题3分)一个圆柱的底面直径为6cm,高为10cm,则这个圆柱的侧面积是60cm2(结果保留)考点:几何体的表面积分析:直接利用圆柱体侧面积公式求出即可解答:解:一个圆柱的底面直径为6cm,高为10cm,这个圆柱的侧面积是:d10=60(cm2)故答案为:60点评:此题主要考查了圆柱体侧面积求法,正确根据圆柱体侧面积公式是解题关键4(2014攀枝花,第15题4分)如图是一个几何体的三视图,这个几何体是圆锥,它的侧面积是2(结果不取近似值)考点:圆锥的计算;由三视图判断几何体分析:俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长母线长2解
30、答:解:此几何体为圆锥;半径为:r=1,高为:h=,圆锥母线长为:l=2,侧面积=rl=2;故答案为:圆锥,2点评:本题考查了圆锥的计算,该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形5(2014贵州黔西南州, 第19题3分)如图,将矩形纸片ABCD折叠,使边AB、CD均落在对角线BD上,得折痕BE、BF,则EBF=45来%&源:中#教网第1题图考点:角的计算;翻折变换(折叠问题)分析:根据四边形ABCD是矩形,得出ABE=EBD=ABD,DBF=FBC=DBC,再根据ABE+EBD+DBF+FBC=ABC=90
31、,得出EBD+DBF=45,从而求出答案解答:解:四边形ABCD是矩形,根据折叠可得ABE=EBD=ABD,DBF=FBC=DBC,ABE+EBD+DBF+FBC=ABC=90,EBD+DBF=45,即EBF=45,故答案为:45点评:此题考查了角的计算和翻折变换,解题的关键是找准图形翻折后,哪些角是相等的,再进行计算,是一道基础题6. (2014黑龙江牡丹江, 第15题3分)如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,则tanEAF的值=第2题图考点:翻折变换(折叠问题)专题:计算题分析:先根据矩形的性质得CD=AB=8,AD=BC=10,再
32、根据折叠的性质得AF=AD=10,DE=EF,AFE=D=90,在RtABF中,利用勾股定理计算出BF=6,则FC=BCBF=4,设EF=x,则DE=x,CE=CDDE=8x,在RtCEF中,根据勾股定理得到42+(8x)2=x2,解得x=5,即EF=5,然后在RtAEF中根据正切的定义求解解答:解:四边形ABCD为矩形,CD=AB=8,AD=BC=10,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,AF=AD=10,DE=EF,AFE=D=90,在RtABF中,BF=6,FC=BCBF=4,设EF=x,则DE=x,CE=CDDE=8x,在RtCEF中,CF2+CE2=EF2,42+(8x)2=x2,解得x=5,即EF=5,在RtAEF中,tanEAF=故答案为点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了矩形的性质和勾股定理7三、解答题1. (2014山西,第23题11分)课程学习:正方形折纸中的数学动手操作:如图1,四边形ABCD是一张正方形纸片
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北师大小学数学五年级下册《混合运算及应用题》
- 物联网环境下资源受限的进程通信-洞察分析
- 云端人力资源平台-洞察分析
- 医疗机器人与自动化-洞察分析
- 2024年度高端车型代购及租赁服务管理合同3篇
- 2024年国家助学贷款大学生贷款合同解除服务合同3篇
- 线段树支持网络图谱构建-洞察分析
- 血管内皮功能研究进展-洞察分析
- 采购合同管理心得3篇
- 2024年版:建筑项目基坑支护劳务外包合同
- 伴瘤内分泌综合征课件
- 妇科手术快速康复治疗
- 常州邻里中心课件
- 客车交通安全培训课件
- 某建筑公司项目部qc小组活动课题-《提高内墙抹灰质量》成果总结报告
- 辽宁省大连市2023-2024学年高二上学期期末考试数学试题(解析版)
- 南京市2023-2024学年八年级上学期期末道德与法治试卷(含答案解析)
- SJG 09-2024 建筑基桩检测标准
- 湖南师范大学学位英语历年考试真题
- 发运员工作总结汇报
- 露营餐厅经营方案
评论
0/150
提交评论