版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
2、要求的。1某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下:小王说:“入班即静”是我写的;小董说:“天道酬勤”不是小王写的,就是我写的;小李说:“细节决定成败”不是我写的.若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是( )A小王或小李B小王C小董D小李2已知定义在上函数的图象关于原点对称,且,若,则( )A0B1C673D6743若复数满足,则(其中为虚数单位)的最大值为( )
3、A1B2C3D44命题“”的否定是( )ABCD5已知底面是等腰直角三角形的三棱锥P-ABC的三视图如图所示,俯视图中的两个小三角形全等,则( )APA,PB,PC两两垂直B三棱锥P-ABC的体积为CD三棱锥P-ABC的侧面积为6在中,点,分别在线段,上,且,则( )ABC4D97已知函数下列命题:函数的图象关于原点对称;函数是周期函数;当时,函数取最大值;函数的图象与函数的图象没有公共点,其中正确命题的序号是( )ABCD8设,为非零向量,则“存在正数,使得”是“”的( )A既不充分也不必要条件B必要不充分条件C充分必要条件D充分不必要条件9中国古代中的“礼、乐、射、御、书、数”合称“六艺”
4、.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有( )种.A408B120C156D24010已知为虚数单位,若复数满足,则( )ABCD11过抛物线C:y24x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MNl,则M到直线NF的距离为( )A BCD12若(),则( )A0或2B0C1或2D1二、填空题:本题共4小题
5、,每小题5分,共20分。13已知单位向量的夹角为,则=_.14在的展开式中的系数为,则_15如图所示,在边长为4的正方形纸片中,与相交于.剪去,将剩余部分沿,折叠,使、重合,则以、为顶点的四面体的外接球的体积为_.16已知实数,满足约束条件,则的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)讨论的单调性;(2)若恒成立,求实数的取值范围.18(12分)已知函数.(1)若是的极值点,求的极大值;(2)求实数的范围,使得恒成立.19(12分)已知函数,直线是曲线在处的切线 (1)求证:无论实数取何值,直线恒过定点,并求出该定点的坐标; (2
6、)若直线经过点,试判断函数的零点个数并证明20(12分)设函数(1)当时,求不等式的解集;(2)若对任意都有,求实数的取值范围21(12分)购买一辆某品牌新能源汽车,在行驶三年后,政府将给予适当金额的购车补贴.某调研机构对拟购买该品牌汽车的消费者,就购车补贴金额的心理预期值进行了抽样调查,其样本频率分布直方图如图所示.(1)估计拟购买该品牌汽车的消费群体对购车补贴金额的心理预期值的方差(同一组中的数据用该组区间的中点值作代表);(2)将频率视为概率,从拟购买该品牌汽车的消费群体中随机抽取人,记对购车补贴金额的心理预期值高于万元的人数为,求的分布列和数学期望;(3)统计最近个月该品牌汽车的市场销
7、售量,得其频数分布表如下:月份销售量(万辆)试预计该品牌汽车在年月份的销售量约为多少万辆?附:对于一组样本数据,其回归直线的斜率和截距的最小二乘估计分别为,.22(10分)将棱长为的正方体截去三棱锥后得到如图所示几何体,为的中点.(1)求证:平面;(2)求二面角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】根据题意,分别假设一个正确,推理出与假设不矛盾,即可得出结论.【详解】解:由题意知,若只有小王的说法正确,则小王对应“入班即静”,而否定小董说法后得出:小王对应“天道酬勤”,则矛盾;若只有小董的说法正确,则
8、小董对应“天道酬勤”,否定小李的说法后得出:小李对应“细节决定成败”,所以剩下小王对应“入班即静”,但与小王的错误的说法矛盾;若小李的说法正确,则“细节决定成败”不是小李的,则否定小董的说法得出:小王对应“天道酬勤”,所以得出“细节决定成败”是小董的,剩下“入班即静”是小李的,符合题意.所以“入班即静”的书写者是:小李.故选:D.【点睛】本题考查推理证明的实际应用.2B【解析】由题知为奇函数,且可得函数的周期为3,分别求出知函数在一个周期内的和是0,利用函数周期性对所求式子进行化简可得.【详解】因为为奇函数,故;因为,故,可知函数的周期为3;在中,令,故,故函数在一个周期内的函数值和为0,故.
9、故选:B.【点睛】本题考查函数奇偶性与周期性综合问题. 其解题思路:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解3B【解析】根据复数的几何意义可知复数对应的点在以原点为圆心,1为半径的圆上,再根据复数的几何意义即可确定,即可得的最大值.【详解】由知,复数对应的点在以原点为圆心,1为半径的圆上,表示复数对应的点与点间的距离,又复数对应的点所在圆的圆心到的距离为1,所以.故选:B【点睛】本题考查了复数模的定义及其几何意义应用,属于基础题.4D【解析】根据全称命题的否定是特称命题,对命题进行改写即可.【详解】全称
10、命题的否定是特称命题,所以命题“,”的否定是:,故选D【点睛】本题考查全称命题的否定,难度容易.5C【解析】根据三视图,可得三棱锥P-ABC的直观图,然后再计算可得.【详解】解:根据三视图,可得三棱锥P-ABC的直观图如图所示,其中D为AB的中点,底面ABC.所以三棱锥P-ABC的体积为,、不可能垂直,即不可能两两垂直,.三棱锥P-ABC的侧面积为.故正确的为C.故选:C.【点睛】本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题.6B【解析】根据题意,分析可得,由余弦定理求得的值,由可得结果.【详解】根据题意,则在中,又,则则则则故选:B【点睛】此题考查余弦定理和向量的
11、数量积运算,掌握基本概念和公式即可解决,属于简单题目.7A【解析】根据奇偶性的定义可判断出正确;由周期函数特点知错误;函数定义域为,最值点即为极值点,由知错误;令,在和两种情况下知均无零点,知正确.【详解】由题意得:定义域为,为奇函数,图象关于原点对称,正确;为周期函数,不是周期函数,不是周期函数,错误;,不是最值,错误;令,当时,此时与无交点;当时,此时与无交点;综上所述:与无交点,正确.故选:.【点睛】本题考查函数与导数知识的综合应用,涉及到函数奇偶性和周期性的判断、函数最值的判断、两函数交点个数问题的求解;本题综合性较强,对于学生的分析和推理能力有较高要求.8D【解析】充分性中,由向量数
12、乘的几何意义得,再由数量积运算即可说明成立;必要性中,由数量积运算可得,不一定有正数,使得,所以不成立,即可得答案.【详解】充分性:若存在正数,使得,则,得证;必要性:若,则,不一定有正数,使得,故不成立;所以是充分不必要条件故选:D【点睛】本题考查平面向量数量积的运算,向量数乘的几何意义,还考查了充分必要条件的判定,属于简单题.9A【解析】利用间接法求解,首先对6门课程全排列,减去“乐”排在第一节的情况,再减去“射”和“御”两门课程相邻的情况,最后还需加上“乐”排在第一节,且“射”和“御”两门课程相邻的情况;【详解】解:根据题意,首先不做任何考虑直接全排列则有(种),当“乐”排在第一节有(种
13、),当“射”和“御”两门课程相邻时有(种),当“乐”排在第一节,且“射”和“御”两门课程相邻时有(种),则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有(种),故选:【点睛】本题考查排列、组合的应用,注意“乐”的排列对“射”和“御”两门课程相邻的影响,属于中档题10A【解析】分析:题设中复数满足的等式可以化为,利用复数的四则运算可以求出.详解:由题设有,故,故选A.点睛:本题考查复数的四则运算和复数概念中的共轭复数,属于基础题.11C【解析】联立方程解得M(3,),根据MNl得|MN|MF|4,得到MNF是边长为4的等边三角形,计算距离得到答案.【详解】依题意得F(1,0),则直
14、线FM的方程是y(x1)由得x或x3.由M在x轴的上方得M(3,),由MNl得|MN|MF|314又NMF等于直线FM的倾斜角,即NMF60,因此MNF是边长为4的等边三角形点M到直线NF的距离为故选:C.【点睛】本题考查了直线和抛物线的位置关系,意在考查学生的计算能力和转化能力.12A【解析】利用复数的模的运算列方程,解方程求得的值.【详解】由于(),所以,解得或.故选:A【点睛】本小题主要考查复数模的运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】因为单位向量的夹角为,所以,所以=.142【解析】首先求出的展开项中的系数,然后根据系数为即可求出的取值.【详解】
15、由题知,当时有,解得.故答案为:.【点睛】本题主要考查了二项式展开项的系数,属于简单题.15【解析】将三棱锥置入正方体中,利用正方体体对角线为三棱锥外接球的直径即可得到答案.【详解】由已知,将三棱锥置入正方体中,如图所示,故正方体体对角线长为,所以外接球半径为,其体积为.故答案为:.【点睛】本题考查三棱锥外接球的体积问题,一般在处理特殊几何体的外接球问题时,要考虑是否能将其置入正(长)方体中,是一道中档题.16【解析】作出满足约束条件的可行域,将目标函数视为可行解与点的斜率,观察图形斜率最小在点B处,联立,解得点B坐标,即可求得答案.【详解】作出满足约束条件的可行域,该目标函数视为可行解与点的
16、斜率,故由题可知,联立得,联立得所以,故所以的最小值为故答案为:【点睛】本题考查分式型目标函数的线性规划问题,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)当时,在上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增;(2).【解析】(1)对a分三种情况讨论求出函数的单调性;(2)对a分三种情况,先求出每一种情况下函数f(x)的最小值,再解不等式得解.【详解】(1),当时,在上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增.综上:当时,在上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减
17、,在上单调递增.(2)由(1)可知:当时,成立.当时,.当时,即.综上.【点睛】本题主要考查利用导数研究函数的单调性和不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.18(1).(2)【解析】(1)先对函数求导,结合极值存在的条件可求t,然后结合导数可研究函数的单调性,进而可求极大值;(2)由已知代入可得,x2+(t2)xtlnx0在x0时恒成立,构造函数g(x)x2+(t2)xtlnx,结合导数及函数的性质可求.【详解】(1),x0,由题意可得,0,解可得t4,易得,当x2,0 x1时,f(x)0,函数单调递增,当1x2时,f(x)0,函数单调递减,故当x1时,函数取
18、得极大值f(1)3;(2)由f(x)x2+(t2)xtlnx+22在x0时恒成立可得,x2+(t2)xtlnx0在x0时恒成立,令g(x)x2+(t2)xtlnx,则,(i)当t0时,g(x)在(0,1)上单调递减,在(1,+)上单调递增,所以g(x)ming(1)t10,解可得t1,(ii)当2t0时,g(x)在()上单调递减,在(0,),(1,+)上单调递增,此时g(1)t11不合题意,舍去;(iii)当t2时,g(x)0,即g(x)在(0,+)上单调递增,此时g(1)3不合题意;(iv)当t2时,g(x)在(1,)上单调递减,在(0,1),()上单调递增,此时g(1)t13不合题意,综上
19、,t1时,f(x)2恒成立.【点睛】本题主要考查了利用导数求解函数的单调性及极值,利用导数与函数的性质处理不等式的恒成立问题,分类讨论思想,属于中档题.19(1)见解析,(2)函数存在唯一零点.【解析】(1)首先求出导函数,利用导数的几何意义求出处的切线斜率,利用点斜式即可求出切线方程,根据方程即可求出定点.(2)由(1)求出函数,令方程可转化为记,利用导数判断函数在上单调递增,根据,由零点存在性定理即可求出零点个数.【详解】所以直线方程为即,恒过点将代入直线方程,得考虑方程即,等价于记,则于是函数在上单调递增,又所以函数在区间上存在唯一零点, 即函数存在唯一零点.【点睛】本题考查了导数的几何
20、意义、直线过定点、利用导数研究函数的单调性、零点存在性定理,属于难题.20(1)(2)【解析】利用零点分区间法,去掉绝对值符号分组讨论求并集,对恒成立,则,由三角不等式,得求解【详解】解:当时,不等式即为,可得或或,解得或或,则原不等式的解集为 若对任意、都有,即为, 由,当取得等号,则,由,可得,则的取值范围是【点睛】本题考查含有两个绝对值符号的不等式解法及利用三角不等式解恒成立问题. (1)含有两个绝对值符号的不等式常用解法可用零点分区间法去掉绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解(2)利用三角不等式把不等式恒成立问题转化为函数最值问题.21(1)1.7;(2),见解析;(2)2.【解析】(1)平均数的估计值为每个小矩形组中值乘以小矩形面积的和;(2)易得,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年款新能源汽车充电服务协议2篇
- 年度鲜奶供应与运输合同(2024年)2篇
- 二零二四年度二手健身器材买卖合同3篇
- 2024年葡萄购入合同实例2篇
- 2024年建筑工程乳胶漆供货协议
- 2024年度股权转让合同:某初创公司与投资方之间的股权转让与估值确定(2024版)3篇
- 员工职业技能提升合作合同(2024年)2篇
- 急性白血病检验与临床
- 2024年度土地开发合作协议
- 2024年市场推广委托合同3篇
- 智能药膏的开发与评价
- 2010年10月自考00244经济法概论试题及答案含解析
- 广州市黄埔区永和街道办事处治安联防队招聘联防队员考试试题及答案
- 2024年ISO9001质量管理体系培训教材
- 煤层气公司考试内容题库
- 部编版四年级语文上册第八单元大单元教学设计
- 胚胎移植术后的健康教育
- 怒江水电开发的工程伦理思考
- 2024年白酒行业分析报告及未来发展趋势
- 康养小镇规划方案图
- 矿场消防安全培训课件
评论
0/150
提交评论