功能陶瓷讲义1_第1页
功能陶瓷讲义1_第2页
功能陶瓷讲义1_第3页
功能陶瓷讲义1_第4页
功能陶瓷讲义1_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Electronic Ceramics and Their ApplicationsX.M. Chen ()Department of Materials Science & Engineering, Zhejiang University, Hangzhou 310027Tel: 87952112; E-mail: Web: 1Brief Introduction of X.M. ChenWas born in Hunan 1959B.S. Dept. Mater. Sci.& Eng., Central South University in 1981PhD Dept. Mater. Sc

2、i. & Metallurgy, The University of Tokyo in 1991Research Scientist at Yokohama R&D Labs., Furukawa Electric Co. Ltd. (Japan), 1991-1994Associate Professor, Dept. Mater. Sci. Eng., Zhejiang Univ. 1994-1996Professor, Dept. Mater. Sci. Eng., Zhejiang Univ., Since 1996Distinguished Young Scientist Found

3、ation of NSFC in 2000Professor of “Changjiang Scholar Program” 2002Member of International Advisory Board of MMA2000, MMA2002, MMA2006Chairman, MMA-2004 (Inuyama, Japan) & MMA-2008 (Hangzhou, China)Member of Executive Board, Asian Electroceramics Association (AECA). Authored or co-authored more than

4、 140 papers in pier-reviewed international journals 2Research Activities in X.M. Chens Group微波介质陶瓷及其应用(Microwave dielectric ceramics and their applications)中介电常数微波介质陶瓷新体系低介电常数微波介质陶瓷新体系叠层介质谐振器可调谐介电薄膜铁电与介电新材料(Ferroelectric and dielectric new materials)巨介电常数材料(Giant dielectric constant materials)非铅铁电与弛

5、豫铁电陶瓷(Pb-free ferroelectric and relaxor ferroelectric ceramics)微图案铁电薄膜(Micro-patterned ferroelectric thin films)复相与多功能耦合陶瓷(Composite and multifunctional ceramics)磁电复相陶瓷 (Magetoelectric composite ceramics)多铁性材料 (Multiferroic materials)磁性电介质(Magnetic dielectrics)34功能陶瓷的基本概念与结构陶瓷相对应的概念,主要指具备特定的电、磁、声、光、

6、热等物理性能的陶瓷材料;电子陶瓷是功能陶瓷的主体;电子陶瓷:介电陶瓷(绝缘陶瓷)、铁电陶瓷、反铁电陶瓷、压电陶瓷、热释电陶瓷、半导体陶瓷、电光陶瓷、磁性陶瓷等在电子、通讯、军事、以及家电技术中有着广泛的应用。56789功能陶瓷的学科关系学科基础:固体物理、固体化学、电磁学、材料科学基础相关学科:电子、通讯、仪器仪表等无机非金属材料功能材料功能陶瓷10功能陶瓷现代电子技术的三大物质基础之一半导体材料电介质材料(功能陶瓷)光电子材料微电子学固体电子学光电子学电子材料111213Primary ContentsElements of Dielectrics (电介质) and Ceramic Ins

7、ulatorsFerroelectric(铁电), Relaxor Ferroelectric(驰豫铁电), Antiferroelectric (反铁电) Ceramics and Ceramic Capacitors(电容器) Microwave Dielectric Ceramics(微波介质陶瓷)Piezoelectric(压电) and Opto-electric CeramicsCeramic SensorsZnO Varistors(变阻器)Conducting Ceramics14Chapter 1 Elements of Dielectrics and Ceramic Ins

8、ulatorsI. Elements of Dielectrics15物质按导电性能的分类载流子长程运动与位移传导、宏观电流导体:金属、部分非金属半导体:部分非金属单质与化合物绝缘体 (无载流子长程运动与位移):大部分非金属单质与化合物载流子短程运动与位移极化(Polarization)电介质(绝缘体+半导体;通常为绝缘体)16电介质的基本物理概念-极化极化-正负电荷中心偏移偶极矩(dipole moment)p=Qdx (1.1)极化强度PP=dp/dV=Njmj (1.2)(Nj=number of dipoles of type j; mj=average dipole moment)m

9、j= aj E (1.3)aj - polarizability of average dipole moment;E- local electric fieldP=sp (surface charge density) (1.4) 17极化机理at= as+ao+ai+ae (1.5) ae-Electronic (Atomic) Polarization; ai -Ionic Polarization;ao-Orientation (Dipolar) Polarization;as -Space Charge or Diffusional Polarization181920电位移D、电场

10、强度E与极化强度P的关系For case a): E=s/e0 (1.6)s - surface charge densityFor case b): E=(sT-sP)/e0 (1.7)sT total surface charge density; sP polarazation charge densitySince P= sP and sT=D (electric displacement) e0 E=P-D (1.8) D= e0 E+ P (1.9) If the dielectric is linear, P=ce e0 E, so that D= e0 E+ ce e0 E=(

11、1+ ce) e0 E (1.10) where, ce is electric susceptibility, a tensor of the second rank21介电常数(Dielectric Constant)Since D= sT, QT/A= (1+ ce) e0 U/h (1.11) QT =(1+ ce) e0 UA/h (1.12) C=QT/U= (1+ ce) e0 A/h (1.13)Since vacuum has zero susceptibility, C0=e0 A/h (1.14)If the space between the plates is fil

12、led with a dielectric of susceptibility ce, the capacitance is increased by a factor 1+ ce.Permittivity e of the dielectric is defined by e =e0(1+ ce) (1.15)Dielectric constant (relative permittivity) er = e /e0=1+ ce (1.16)22An individual atom or ion in a dielectric is not subjected directly to an

13、applied field but to a local field.The internal macroscopic field Em is the resultant of applied external field Ea and depolarizing field Edp, i.e. Ea-Edp. It is assumed that the solid can be regarded as comprising identifiable polarizable entities on the atomic scale.The local field EL (or Lorentz

14、field) differ from Em since the latter is arrived at by considering the dielectric as a continuum. EL = Em+Ep+Ed (1.17) where, Ep-the contribution from the charges at the surface of the spherical cavity (imaging for the moment that the sphere of material is removed); Ed-due to the dipoles within the

15、 boundary.Applied External Field, Internal Macroscopic Field & Local (Lorentz) Field23Clausius-Mosotti EquationEp can be shown to be P/3e0, and Ed=0 for certain crystals of high symmetry and glasses. So that, EL= Em+ P/3e0 = Ea-Edp + P/3e0 (1.18)In more general case, it is assumed that EL= Em+ gP (1

16、.19) in which g is the “internal field constant”The dipole moment p induced in the entity can be now written as p=a EL (1.20)If it is assumed that all entities are of the same type and have a density N, then P=Np=Na(Em+ gP) (1.21)Or P/e0Em =ce= Na/e0/(1-Nag) (1.22)In the particular case for which g=

17、1/3eo, we have the Clausius-Mosotti Equation (er-1)/(er+2)=Na/3e0 (1.23)24介电损耗 (Dielectric Loss)25介电损耗 (Dielectric Loss)对于理想电介质,极化能适时响应外电场变化,电位移与电场的相位相同(电流超前p/2) 不产生能量损耗;而对于实际电介质,极化不能适时响应外电场变化(滞后于电场d-损耗角), 而出现介电弛豫 介电损耗。介电损耗的数学描述 E=E0exp(iwt) (1.24) D=D0expi(wt-d) (1.25) 利用D=k*E,得 k*=ksexp(-id)=ks(co

18、nd-isind) (1.26) 其中,ks- 静态介电常数(=D0/E0)26介电损耗 (Dielectric Loss)利用复介电常数的概念 k*=k-ik”=e*/e0=(e-ie”)/e0 (1.27) k=kscosd (1.28) k”=kssind (1.29) tand=k”/k=e”/e (1.30)tand即为介电损耗物理意义 极化过程中消耗的能量与储存的能量的比值电介质的品质因数:Q=1/ tand27Resonance Effects In the case of atomic and ionic polarization, the electrons and ions

19、 behave, to a first approximation, as though bound to equilibrium positions by linear springs so that the restoring force is proportional to displacement, a damping factor g is included in the equation of motion. (1.31)Solving (1.31) and ignoring the transient term yields (1.32)Since ex(t) is the in

20、duced dipole moment per atom, the complex polarization P* is given by (1.33)28Resonance EffectsAnd (1.34)So that (1.35) By equating real and imaginary parts (1.36) (1.37) The above the contributions of ionic and electronic polarization, which are sensibly independent of temperature, the resonance cu

21、rves are also. 29Variation in and with frequency close to a resonance frequency w0.30Relaxation EffectsIn contrast with the electronic and ionic polarization processes, the diffusional polarization and depolarization processes are relatively slow and strongly temperature dependent.The diffusional po

22、larization Pd approaches its final static value Pds according the following equation (1.38) where, t is a relaxation time.Integrating (1.38) with initial condition Pd=0 when t=0 gives (1.39)To account for alternating applied field, Eq. (1.38) should be modified to (1.40) where, ers is the low freque

23、ncy dielectric constant.31Relaxation Effects & Debye EquationsEquation (1.40) can be integrated to give (1.41)By neglecting the transient Cexp(-t/t), we can get (1.42)The Debye Equations are obtained by separating the real and imaginary parts of Eq. (1.42) (1.43) (1.44)The relaxation frequency is w=

24、1/t323334Dielectric DispersionWith increasing frequency, dielectric constant generally decrease, and some peaks appear for dielectric loss.Origins of dielectric dispersion: Rrelaxation process (orientation and space charge polarization)Resonance process (electronic and ionic polarization)Available f

25、requencies for various polarization mechanisms:Space charge polarization: 102HzOrientation polarization: 106HzIonic polarization: 1013HzElectronic polarization: 1016Hz35Cole-Cole DistributionsCole and Cole (1942) modified equation (1.42) by including an exponent a (1.45)The distribution is obtained

26、by plotting er” as a function of er, yielding what is termed the Cole-Cole distribution.Using the circuit parameters , , , we obtain (1.46)Or (1.47)36k” or e”k or eC1/e0(C1+C2)/e0w0RC2=1Indicates high lossesRC circuitCole-Cole plotCole-Cole Plot and the RC Circuit37Physical Meaning of Cole-Cole Plot

27、The Cole-Cole plot of a material is a measure of the various relaxation times for a specific dielectric material.A very narrow distribution of relaxation times perfect dielectric. This indicates that only one primary mechanism exists for the polarization within the material;A tail in the distributio

28、n indicates a large distribution of relaxation time;A large range of relaxation times can indicate multiple polarization mechanisms but also losses due to conduction. A perfect or low loss dielectric would have a Cole-Cole plot that is nearly a semicircle;A poor or high loss dielectric would have a

29、non-bounded increasing er” with increasing er. 38Dielectric Strength (介电强度)Dielectric breakdown(介电击穿): All dielectrics when placed in an electric field will lose their insulating properties if the field exceeds a certain critical value.This phenomenon is called dielectric breakdown.Dielectric streng

30、th 1.48)Dielectric breakdown mechanismsIntrinsic breakdownThermal breakdownInonization breakdownElectrochemical breakdown 39Factors Affecting Dielectric StrengthComposition: amorphous or crystalline nature, presence of mobile ions;Microstructural features: porosity, grain size, cracks, flaws, second

31、ary phases;Measurement parameters: electrode configuration, specimen thickness, temperature, time, frequency, humidity and heat transfer conditions.40Chapter 1 Elements of Dielectrics and Ceramic InsulatorsII. Ceramic Insulators41IntoductionFunction of insulator in electric circuits:Physical separat

32、ion of conductors and the regulation or prevention of current flow between them;Ancillary but important other functions are to provide mechanical support, heat dissipation and environmental protection for the conductors Advantages of ceramic insulators: Materials type used as insulators: linear diel

33、ectricsTypical elements of ceramic insulator: ceramic substrates, ceramic packages42Property Requirements to Ceramic InsulatorsDielectric constant;Dielectric loss;Dielectric strength;Resistivity (1.49)Thermal conductivity;Thermal expansion coefficient;Mechanical properties.43Property Criteria for Go

34、od Ceramic InsulatorsDielectric constant: not greater than 30;Electric resistivity: not less than 1012 W-cm;Dielectric loss (dissipation factor): not larger than 0.001;Dielectric strength: not less than 5.0kV/mmDielectric loss factor: not larger than 0.03 44Properties at 1MHz(room temperature)Materi

35、alTandDielectric constant Loss factor Dielectric strengthResistivity at 25oC(cm)Porcelain(R2OAl2O3SiO2)0.008-0.0205.0-6.50.04-0.136.1-13.01014Zircon(ZrO2SiO2)0.0018.0-9.60.008-0.00966.3-11.51014Steatite(MgOSiO2)0.008-0.00356.00.005-0.027.9-13.81014Forsterite(2MgOSiO2)0.0005-0.0015.8-6.70.003-0.0077.

36、9-11.91017Cordierite(2MgO2Al2O35SiO2)0.003-0.0054.1-5.30.012-0.0255.5-9.11017Alumina(Al2O390-99.9%)0.0003-0.0028.8-10.10.03-0.029.9-15.81016Spinel(MgOAl2O3)0.00047.50.00311.91016Mullite(3Al2O32SiO2)0.0056.2-6.80.03-0.0347.81014Magnesia(MgO)0.00018.90.00898.5-11.01014Beryllia(BeO96-99%)0.0001-0.0016.

37、00.006-0.069.5-13.81016Zirconia(ZrO2)0.0112.00.125.0109Table 1.1 Dielectric properties of Ceramic Insulators 45Table 1.1 Dielectric properties of Ceramic InsulatorsMaterialTandDielectric constant Loss factor Dielectric strengthResistivity at 25oC(cm)Thoria(ThO2)0.000313.50.0045.31010Hafnia(HfO2)0.01

38、120.12108Ceria(CeO2)0.0007150.011109Spodumene(Li2OAl2O3SiO2)0.0056.5-7.50.03-0.041011Boron nitride(BN)0.0014.20.00435.6-55.41014Silicon nitride(Si3N4)0.00016.10.000615.8-19.81013-14Pyroceram0.0017-0.0135.5-6.30.01-0.079.9-11.91012Glass-bonded mica0.0015-0.0036.4-9.20.011-0.02310.6-23.71014Mica0.0002

39、5.4-8.70.001-0.00239.5-79.11016Glass(Na2OCaOSiO2)0.0005-0.014.0-8.00.002-0.087.8-13.21012Quartz(SiO2)0.00033.8-5.40.001515-25.01014-18Pb-Al silicate0.0018.2-150.008-0.0158.9-16.01013Aluminum Nitride(AlN)0.00018.8-8.90.001151013Silicon11.946Table 1.2 Thermomechanical Properties of Ceramic Insulators

40、MaterialSpecific gravityThermal conductivity at 25oC(cal/sec-oC-cm)Thermal coefficient of expansion25-300oC(10-6/oC)Tensile strength(Mpa)MOR Transv strength(Mpa)Compress strength(Mpa)Thernal shock resistancePorcelain(R2OAl2O3SiO2)2.40.0066.04883352FairZircon(ZrO2SiO2)3.70.0124.3-4.896172524GoodSteat

41、ite(MgOSiO2)2.80.0066.9-7.8100125650ModerateForsterite(2MgOSiO2)2.80.006-0.011076140550PoorCordierite(2MgO2Al2O35SiO2)2.2-2.90.005-0.0072.2-2.465105400ExcellentAlumina(Al2O390-99.9%)3.85-3.90.06-0.078.02604453400GoodSpinel(MgOAl2O3)2.80.0186.6951031710FairMullite(3Al2O32SiO2)2.6-3.20.014.3-5.0901501

42、200FairMagnesia(MgO)3.3-3.50.04-0.00910-1390138950FairBeryllia(BeO96-99%)2.8-2.950.4-0.77-91202481600GoodZirconia(ZrO2)5.43-5.560.02-0.054.3-8.3148186940Poor47Table 1.2 Thermomechanical Properties of Ceramic InsulatorsMaterialSpecific gravityThermal conductivity at 25oC(cal/sec-oC-cm)Thermal coefficient of expansion25-300oC(10-6/oC)Tensile strength(Mpa)MOR Transv strength(Mpa)Compress strength(Mpa)Thernal shock resistanceThoria(ThO2)9.70.0335.3-9.01151311524PoorHafnia(HfO2)9.00.0046.5901101386PoorCeria(CeO2)7.00.02910.0881101386Poo

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论