版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、专题五 二次函数【要点回顾】1 二次函数yax2bxc的图像和性质问题1 函数yax2与yx2的图象之间存在怎样的关系?问题2 函数ya(xh)2k与yax2的图象之间存在怎样的关系?由上面的结论,我们可以得到研究二次函数yax2bxc(a0)的图象的方法:由于yax2bxca(x2)ca(x2)c, 所以,yax2bxc(a0)的图象可以看作是将函数yax2的图象作左右平移、上下平移得到的,二次函数yax2bxc(a0)具有下列性质:1当a0时,函数yax2bxc图象开口方向 ;顶点坐标为 ,对称轴为直线 ;当 时,y随着x的增大而 ;当 时,y随着x的增大而 ;当 时,函数取最小值 2当a
2、0时,函数yax2bxc图象开口方向 ;顶点坐标为 ,对称轴为直线 ;当 时,y随着x的增大而 ;当 时,y随着x的增大而 ;当 时,函数取最大值 上述二次函数的性质可以分别通过上图直观地表示出来因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题2二次函数的三种表示方式1二次函数的三种表示方式:(1)一般式: ;(2)顶点式: ;(3)交点式: 说明:确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则二次函数的关系式可设如下三种形式:给出三点坐标可利用一般式来求;给出两点,且其中一点为顶
3、点时可利用顶点式来求给出三点,其中两点为与x轴的两个交点.时可利用交点式来求3分段函数一般地,如果自变量在不同取值范围内时,函数由不同的解析式给出,这种函数,叫作分段函数【例题选讲】例1 求二次函数y3x26x1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x取何值时,y随x的增大而增大(或减小)?并画出该函数的图象解:y3x26x13(x1)24,函数图象的开口向下;对称轴是直线x1;顶点坐标为(1,4);当x1时,函数y取最大值y4;当x1时,y随着x的增大而增大;当x1时,y随着x的增大而减小;采用描点法画图,选顶点A(1,4),与x轴交于点B和C,与y轴的交点为D(0,
4、1),过这五点画出图象(如图25所示)说明:从这个例题可以看出,根据配方后得到的性质画函数的图象,可以直接选出关键点,减少了选点的盲目性,使画图更简便、图象更精确例2 某种产品的成本是120元/件,试销阶段每件产品的售价x(元)与产品的日销售量y(件)之间关系如下表所示:x /元130150165y/件705035若日销售量y是销售价x的一次函数,那么,要使每天所获得最大的利润,每件产品的销售价应定为多少元?此时每天的销售利润是多少?分析:由于每天的利润日销售量y(销售价x120),日销售量y又是销售价x的一次函数,所以,欲求每天所获得的利润最大值,首先需要求出每天的利润与销售价x之间的函数关
5、系,然后,再由它们之间的函数关系求出每天利润的最大值解:由于y是x的一次函数,于是,设ykx(B),将x130,y70;x150,y50代入方程,有 解得 k1,b200 yx200设每天的利润为z(元),则z(x+200)(x120)x2320 x24000(x160)21600,当x160时,z取最大值1600答:当售价为160元/件时,每天的利润最大,为1600元例3 已知函数,其中,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x的值 例3 分析:本例中函数自变量的范围是一个变化的范围,需要对a的取值进行讨论 解:(1)当a2时,函数yx2的图象仅仅对应着一个点(
6、2,4),所以,函数的最大值和最小值都是4,此时x2; (2)当2a0时,由图226可知,当x2时,函数取最大值y4;当xa时,函数取最小值ya2;(3)当0a2时,由图226可知,当x2时,函数取最大值y4;当x0时,函数取最小值y0;(4)当a2时,由图226可知,当xa时,函数取最大值ya2;当x0时,函数取最小值y0说明:在本例中,利用了分类讨论的方法,对a的所有可能情形进行讨论此外,本例中所研究的二次函数的自变量的取值不是取任意的实数,而是取部分实数来研究,在解决这一类问题时,通常需要借助于函数图象来直观地解决问题例4 根据下列条件,分别求出对应的二次函数的关系式(1)已知某二次函数
7、的最大值为2,图像的顶点在直线yx1上,并且图象经过点(3,1);(2)已知二次函数的图象过点(3,0),(1,0),且顶点到x轴的距离等于2;(3)已知二次函数的图象过点(1,22),(0,8),(2,8)(1)分析:在解本例时,要充分利用题目中所给出的条件最大值、顶点位置,从而可以将二次函数设成顶点式,再由函数图象过定点来求解出系数a解:二次函数的最大值为2,而最大值一定是其顶点的纵坐标,顶点的纵坐标为2又顶点在直线yx1上,所以,2x1,x1顶点坐标是(1,2)设该二次函数的解析式为,二次函数的图像经过点(3,1),解得a2二次函数的解析式为,即y2x28x7 说明:在解题时,由最大值确
8、定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函数的顶点式,最终解决了问题因此,在解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地解决问题(2) 分析一:由于题目所给的条件中,二次函数的图象所过的两点实际上就是二次函数的图象与x轴的交点坐标,于是可以将函数的表达式设成交点式解法一:二次函数的图象过点(3,0),(1,0),可设二次函数为ya(x3) (x1) (a0),展开,得 yax22ax3a, 顶点的纵坐标为 ,由于二次函数图象的顶点到x轴的距离2,|4a|2,即a所以,二次函数的表达式为y,或y分析二:由于二次函数的图象过点(3,0),(1,0),所以,对称轴为直
9、线x1,又由顶点到x轴的距离为2,可知顶点的纵坐标为2,或2,于是,又可以将二次函数的表达式设成顶点式来解,然后再利用图象过点(3,0),或(1,0),就可以求得函数的表达式解法二:二次函数的图象过点(3,0),(1,0),对称轴为直线x1又顶点到x轴的距离为2,顶点的纵坐标为2,或2于是可设二次函数为ya(x1)22,或ya(x1)22,由于函数图象过点(1,0),0a(11)22,或0a(11)22a,或a所以,所求的二次函数为y(x1)22,或y(x1)22说明:上述两种解法分别从与x轴的交点坐标及顶点的坐标这两个不同角度,利用交点式和顶点式来解题,在今后的解题过程中,要善于利用条件,选
10、择恰当的方法来解决问题(3)解:设该二次函数为yax2bxc(a0)由函数图象过点(1,22),(0,8),(2,8),可得 解得 a2,b12,c8所以,所求的二次函数为y2x212x8 例5 在国内投递外埠平信,每封信不超过20g付邮资80分,超过20g不超过40g付邮资160分,超过40g不超过60g付邮资240分,依此类推,每封xg(0 x100)的信应付多少邮资(单位:分)?写出函数表达式,作出函数图象分析:由于当自变量x在各个不同的范围内时,应付邮资的数量是不同的所以,可以用分段函数给出其对应的函数解析式在解题时,需要注意的是,当x在各个小范围内(如20 x40)变化时,它所对应的
11、函数值(邮资)并不变化(都是160分)解:设每封信的邮资为y(单位:分),则y是x的函数这个函数的解析式为 由上述的函数解析式,可以得到其图象如图所示【巩固练习】1选择题:(1)把函数y(x1)24的图象的顶点坐标是 ( ) (A)(1,4) (B)(1,4) (C)(1,4) (D)(1,4)(2)函数yx24x6的最值情况是 ( ) (A)有最大值6 (B)有最小值6 (C)有最大值10 (D)有最大值2(3)函数y2x24x5中,当3x2时,则y值的取值范围是 ( ) (A)3y1 (B)7y1 (C)7y11 (D)7y11 2填空:(1)已知某二次函数的图象与x轴交于A(2,0),B
12、(1,0),且过点C(2,4),则该二次函数的表达式为 (2)已知某二次函数的图象过点(1,0),(0,3),(1,4),则该函数的表达式为 3根据下列条件,分别求出对应的二次函数的关系式(1)已知二次函数的图象经过点A(0,),B(1,0),C(,2);(2)已知抛物线的顶点为(1,),且与y轴交于点(0,1);(3)已知抛物线与x轴交于点M(,0),(5,0),且与y轴交于点(0,);(4)已知抛物线的顶点为(3,),且与x轴两交点间的距离为44如图,某农民要用12m的竹篱笆在墙边围出一块一面为墙、另三面为篱笆的矩形地供他圈养小鸡已知墙的长度为6m,问怎样围才能使得该矩形面积最大?5如图所示,在边长为2的正方形ABCD的边上有一个动点P,从点A出发沿折线ABCD移动一周
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度大数据中心运营维护合同
- 2024年建筑工程设计与咨询合同
- 2024年度航空公司机票代理合同
- 2024年度环保工程与技术咨询合同
- 幼儿食品课件教学课件
- 美术课件价格教学课件
- 尿道异物课件教学课件
- 2024年塑料纤维生产加工许可合同
- 2024年建筑人才中介服务协议
- 2024年度南京市存量房购买合同
- GB/T 28054-2023钢质无缝气瓶集束装置
- 2023年度武汉房地产市场报告2024.1.12
- 新人教版九年级下数学27-1《图形的相似》课件
- 高考模拟作文“相信与怀疑”导写及范文
- 荔枝包装工艺设计
- 浙江省9+1高中联盟2022-2023学年高一上学期11月期中考物理试题(解析版)
- 政府数据信息保密协议范本
- 聚酯生产技术 聚酯工艺流程介绍
- 关于日本动漫介绍ppt
- 四年级除法竖式计算题500道
- 质量保证体系范文(必备14篇)
评论
0/150
提交评论