版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1双曲线的左右焦点为,一条渐近线方程为,过点且与垂直的直线分别交双曲线的左支及右支于,满足,则该双曲线的离心率为( )AB3CD22设是虚数单位,则“复数为纯虚数”是“”的(
2、 )A充要条件B必要不充分条件C既不充分也不必要条件D充分不必要条件3某三棱锥的三视图如图所示,则该三棱锥的体积为ABC2D4如图是国家统计局公布的年入境游客(单位:万人次)的变化情况,则下列结论错误的是( ) A2014年我国入境游客万人次最少B后4年我国入境游客万人次呈逐渐增加趋势C这6年我国入境游客万人次的中位数大于13340万人次D前3年我国入境游客万人次数据的方差小于后3年我国入境游客万人次数据的方差5已知集合,则( )ABCD6ABC中,如果lgcosA=lgsinC-lgsinB=-lg2,则ABC的形状是( )A等边三角形B直角三角形C等腰三角形D等腰直角三角形7已知点是双曲线
3、上一点,若点到双曲线的两条渐近线的距离之积为,则双曲线的离心率为( )ABCD28已知集合,集合,则()ABCD9由实数组成的等比数列an的前n项和为Sn,则“a10”是“S9S8”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件10将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是( )A18种B36种C54种D72种11将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为( )ABCD12已知非零向量满足,若夹角的余弦值为,且,则实数的值为( )ABC或D二、填空题:本题共4小题,每小题5分,共20分。13已知三棱锥的
4、四个顶点在球的球面上,是边长为2的正三角形,则球的体积为_14在的展开式中的系数为,则_15小李参加有关“学习强国”的答题活动,要从4道题中随机抽取2道作答,小李会其中的三道题,则抽到的2道题小李都会的概率为_.16正四面体的各个点在平面同侧,各点到平面的距离分别为1,2,3,4,则正四面体的棱长为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图1,与是处在同-个平面内的两个全等的直角三角形,连接是边上一点,过作,交于点,沿将向上翻折,得到如图2所示的六面体(1)求证:(2)设若平面底面,若平面与平面所成角的余弦值为,求的值;(3)若平面底面,求六面体的体积的
5、最大值.18(12分)在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点曲线的极坐标方程为.(1)求直线的普通方程与曲线的直角坐标方程;(2)过点作直线的垂线交曲线于两点(在轴上方),求的值.19(12分)已知函数,其中(1)求函数的单调区间;若满足,且求证: (2)函数若对任意,都有,求的最大值20(12分)我们称n()元有序实数组(,)为n维向量,为该向量的范数.已知n维向量,其中,2,n.记范数为奇数的n维向量的个数为,这个向量的范数之和为.(1)求和的值;(2)当n为偶数时,求,(用n表示).21(12分)对于
6、很多人来说,提前消费的认识首先是源于信用卡,在那个工资不高的年代,信用卡绝对是神器,稍微大件的东西都是可以选择用信用卡来买,甚至于分期买,然后慢慢还!现在银行贷款也是很风靡的,从房贷到车贷到一般的现金贷信用卡“忽如一夜春风来”,遍布了各大小城市的大街小巷为了解信用卡在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了100人进行抽样分析,得到如下列联表(单位:人)经常使用信用卡偶尔或不用信用卡合计40岁及以下15355040岁以上203050合计3565100(1)根据以上数据,能否在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关?(2)现从所抽取
7、的40岁及以下的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出4人赠送积分,求选出的4人中至少有3人偶尔或不用信用卡的概率;将频率视为概率,从市所有参与调查的40岁以上的网民中随机抽取3人赠送礼品,记其中经常使用信用卡的人数为,求随机变量的分布列、数学期望和方差参考公式:,其中参考数据:0.150.100.050.0250.0102.0722.7063.8415.0246.63522(10分)已知,且(1)请给出的一组值,使得成立;(2)证明不等式恒成立参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有
8、一项是符合题目要求的。1A【解析】设,直线的方程为,联立方程得到,根据向量关系化简到,得到离心率.【详解】设,直线的方程为.联立整理得,则.因为,所以为线段的中点,所以,整理得,故该双曲线的离心率.故选:.【点睛】本题考查了双曲线的离心率,意在考查学生的计算能力和转化能力.2D【解析】结合纯虚数的概念,可得,再结合充分条件和必要条件的定义即可判定选项.【详解】若复数为纯虚数,则,所以,若,不妨设,此时复数,不是纯虚数,所以“复数为纯虚数”是“”的充分不必要条件.故选:D【点睛】本题考查充分条件和必要条件,考查了纯虚数的概念,理解充分必要条件的逻辑关系是解题的关键,属于基础题.3A【解析】 由给
9、定的三视图可知,该几何体表示一个底面为一个直角三角形,且两直角边分别为和,所以底面面积为 高为的三棱锥,所以三棱锥的体积为,故选A4D【解析】ABD可通过统计图直接分析得出结论,C可通过计算中位数判断选项是否正确.【详解】A由统计图可知:2014年入境游客万人次最少,故正确;B由统计图可知:后4年我国入境游客万人次呈逐渐增加趋势,故正确;C入境游客万人次的中位数应为与的平均数,大于万次,故正确;D由统计图可知:前年的入境游客万人次相比于后年的波动更大,所以对应的方差更大,故错误.故选:D.【点睛】本题考查统计图表信息的读取以及对中位数和方差的理解,难度较易.处理问题的关键是能通过所给统计图,分
10、析出对应的信息,对学生分析问题的能力有一定要求.5A【解析】考虑既属于又属于的集合,即得.【详解】.故选:【点睛】本题考查集合的交运算,属于基础题.6B【解析】化简得lgcosAlgsinCsinBlg2,即cosA=sinCsinB=12,结合0A, 可求A=3,得B+C=23代入sinC12sinB,从而可求C,B,进而可判断.【详解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosAlgsinCsinBlg2,cosA=sinCsinB=12,0A,A=3,B+C=23,sinC12sinB12sin23-C34cosC+14sinC,tanC33,C6,B2.故选:
11、B【点睛】本题主要考查了对数的运算性质的应用,两角差的正弦公式的应用,解题的关键是灵活利用基本公式,属于基础题7A【解析】设点的坐标为,代入椭圆方程可得,然后分别求出点到两条渐近线的距离,由距离之积为,并结合,可得到的齐次方程,进而可求出离心率的值.【详解】设点的坐标为,有,得.双曲线的两条渐近线方程为和,则点到双曲线的两条渐近线的距离之积为,所以,则,即,故,即,所以.故选:A.【点睛】本题考查双曲线的离心率,构造的齐次方程是解决本题的关键,属于中档题.8D【解析】可求出集合,然后进行并集的运算即可【详解】解:,;故选【点睛】考查描述法、区间的定义,对数函数的单调性,以及并集的运算9C【解析
12、】根据等比数列的性质以及充分条件和必要条件的定义进行判断即可.【详解】解:若an是等比数列,则,若,则,即成立,若成立,则,即,故“”是“”的充要条件,故选:C.【点睛】本题主要考查充分条件和必要条件的判断,利用等比数列的通项公式是解决本题的关键.10B【解析】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇即得.【详解】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇,则不同的分配方案有种.故选:.【点睛】本题考查排列组合,属于基础题.11B【解析】由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案
13、.【详解】由题可知,对其向左平移个单位长度后,其图像关于坐标原点对称故的最小值为故选:B【点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.12D【解析】根据向量垂直则数量积为零,结合以及夹角的余弦值,即可求得参数值.【详解】依题意,得,即.将代入可得,解得(舍去).故选:D.【点睛】本题考查向量数量积的应用,涉及由向量垂直求参数值,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由题意可得三棱锥的三条侧棱两两垂直,则它的外接球就是棱长为的正方体的外接球,求出正方体的对角线的长,就是球的直径,然后求出球的体积.【详解】解:因为,为正三角
14、形,所以,因为,所以三棱锥的三条侧棱两两垂直,所以它的外接球就是棱长为的正方体的外接球,因为正方体的对角线长为,所以其外接球的半径为,所以球的体积为故答案为:【点睛】此题考查球的体积,几何体的外接球,考查空间想象能力,计算能力,属于中档题.142【解析】首先求出的展开项中的系数,然后根据系数为即可求出的取值.【详解】由题知,当时有,解得.故答案为:.【点睛】本题主要考查了二项式展开项的系数,属于简单题.15【解析】从四道题中随机抽取两道共6种情况,抽到的两道全都会的情况有3种,即可得到概率.【详解】由题:从从4道题中随机抽取2道作答,共有种,小李会其中的三道题,则抽到的2道题小李都会的情况共有
15、种,所以其概率为.故答案为:【点睛】此题考查根据古典概型求概率,关键在于根据题意准确求出基本事件的总数和某一事件包含的基本事件个数.16【解析】不妨设点A,D,C,B到面的距离分别为1,2,3,4,平面向下平移两个单位,与正四面体相交,过点D,与AB,AC分别相交于点E,F,根据题意F为中点,E为AB的三等分点(靠近点A),设棱长为a, 求得,再用余弦定理求得:,从而求得,再根据顶点A到面EDF的距离为,得到,然后利用等体积法求解,【详解】不妨设点A,D,C,B到面的距离分别为1,2,3,4,平面向下平移两个单位,与正四面体相交,过点D,与AB,AC分别相交于点E,F,如图所示:由题意得:F为
16、中点,E为AB的三等分点(靠近点A),设棱长为a, ,顶点D到面ABC的距离为所以,由余弦定理得:,所以,所以,又顶点A到面EDF的距离为,所以,因为,所以,解得,故答案为:【点睛】本题主要考查几何体的切割问题以及等体积法的应用,还考查了转化化归的思想和空间想象,运算求解的能力,属于难题,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析(2)(3)【解析】根据折叠图形, ,由线面垂直的判定定理可得平面,再根据平面,得到.(2)根据,以为坐标原点,为轴建立空间直角坐标系,根据,可知,表示相应点的坐标,分别求得平面与平面的法向量,代入求解.设所求几何体的体积为,设
17、为高,则,表示梯形BEFD和 ABD的面积由,再利用导数求最值.【详解】(1)证明:不妨设与的交点为与的交点为由题知,则有又,则有由折叠可知所以可证由平面平面,则有平面又因为平面,所以.(2)解:依题意,有平面平面,又平面,则有平面,又由题意知,如图所示:以为坐标原点,为轴建立如图所示的空间直角坐标系由题意知由可知,则则有,设平面与平面的法向量分别为则有则所以因为,解得设所求几何体的体积为,设,则,当时,当时,在是增函数,在上是减函数当时,有最大值,即六面体的体积的最大值是【点睛】本题主要考查线线垂直,线面垂直,面面垂直的转化,二面角的向量求法和空间几何体的体积,还考查了转化化归的思想和运算求
18、解的能力,属于难题.18(1),;(2)【解析】(1)利用代入法消去参数可得到直线的普通方程,利用公式可得到曲线的直角坐标方程;(2)设直线的参数方程为(为参数),代入得,根据直线参数方程的几何意义,利用韦达定理可得结果.【详解】(1)由题意得点的直角坐标为,将点代入得则直线的普通方程为. 由得,即.故曲线的直角坐标方程为. (2)设直线的参数方程为(为参数),代入得 设对应参数为,对应参数为则,且.【点睛】参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式,等可以把极坐标方程与直角坐标方程互化,这类问题一般我们
19、可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题19(1)单调递增区间,单调递减区间;详见解析;(2).【解析】(1)求导可得,再分别求解与的解集,结合定义域分析函数的单调区间即可.根据(1)中的结论,求出的表达式,再分与两种情况,结合函数的单调性分析的范围即可.(2)求导分析的单调性,再结合单调性,设去绝对值化简可得,再构造函数,根据函数的单调性与恒成立问题可知,再换元表达求解最大值即可.【详解】解:,由可得或,由可得,故函数的单调递增区间,单调递减区间;,或,若,因为,故,由知在上单调递增,若由可得x1,因为,所以,由在上单调递增,综上时,在上单调递减,不妨设由(1)在上单调递
20、减,由,可得,所以, 令,可得单调递减,所以在上恒成立,即在上恒成立,即,所以, ,所以的最大值【点睛】本题主要考查了分类讨论分析函数单调性的问题,同时也考查了利用导数求解函数不等式以及构造函数分析函数的最值解决恒成立的问题.需要根据题意结合定义域与单调性分析函数的取值范围与最值等.属于难题.20(1),.(2),【解析】(1)利用枚举法将范数为奇数的二元有序实数对都写出来,再做和;(2)用组合数表示和,再由公式或将组合数进行化简,得出最终结果.【详解】解:(1)范数为奇数的二元有序实数对有:,它们的范数依次为1,1,1,1,故,.(2)当n为偶数时,在向量的n个坐标中,要使得范数为奇数,则0的个数一定是奇数,所以可按照含0个数为:1,3,进行讨论:的n个坐标中含1个0,其余坐标为1或,共有个,每个的范数为;的n个坐标中含3个0,其余坐标为1或,共有个,每个的范数为;的n个坐标中含个0,其余坐标为1或,共有个,每个的范数为1;所以,.因为,得,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年沪科版九年级化学下册阶段测试试卷
- 商业环境下的学生职业规划与心理健康
- 医疗设备中安全硬件的研发与市场前景分析
- 2025中国铁路北京局集团限公司招聘4982人(一)高频重点提升(共500题)附带答案详解
- 2025中国邮政集团公司重庆分公司社会招聘536人高频重点提升(共500题)附带答案详解
- 2025中国纸业投资限公司社会招聘6人高频重点提升(共500题)附带答案详解
- 2025中国社会科学院美国研究所第一批专业技术人员公开招聘补充高频重点提升(共500题)附带答案详解
- 2025中国电信湖北黄冈分公司招聘30人高频重点提升(共500题)附带答案详解
- 2025中国新闻社应届高校毕业生公开招聘补充高频重点提升(共500题)附带答案详解
- 2025中国国际工程咨询限公司总部社会招聘20人高频重点提升(共500题)附带答案详解
- 2023-2024学年广西贵港市六年级数学第一学期期末学业质量监测模拟试题含答案
- 北师大版高中英语选择性必修四全册课文及翻译(中英文Word)
- 体育系统运动队(俱乐部)在队证明
- 烟花爆竹门店安全的管理制度
- 学前儿童健康教育(学前教育专业)PPT全套完整教学课件
- 北方民族大学床上用品投标文件
- 煤矿安全生产监管检查清单
- 面神经炎课件完整版
- 颅脑外科手术环境及手术配合
- 常用吊具索具报废标准2018
- 中国合唱歌曲精选100首
评论
0/150
提交评论