




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
2、要求的。1已知m,n为异面直线,m平面,n平面,直线l满足l m,l n,则( )A且B且C与相交,且交线垂直于D与相交,且交线平行于2已知数列 是公比为 的等比数列,且 , , 成等差数列,则公比 的值为( )ABC 或 D 或 3已知非零向量满足,且与的夹角为,则( )A6BCD34把满足条件(1),(2),使得的函数称为“D函数”,下列函数是“D函数”的个数为( ) A1个B2个C3个D4个5ABC的内角A,B,C的对边分别为,已知,则为( )ABC或D或6从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A48B72C90D967
3、将函数的图象向左平移个单位长度,得到的函数为偶函数,则的值为()ABCD8已知、分别为双曲线:(,)的左、右焦点,过的直线交于、两点,为坐标原点,若,则的离心率为( )A2BCD9已知函数的定义域为,则函数的定义域为( )ABCD10已知双曲线满足以下条件:双曲线E的右焦点与抛物线的焦点F重合;双曲线E与过点的幂函数的图象交于点Q,且该幂函数在点Q处的切线过点F关于原点的对称点则双曲线的离心率是( )ABCD11设,为非零向量,则“存在正数,使得”是“”的( )A既不充分也不必要条件B必要不充分条件C充分必要条件D充分不必要条件12已知f(x),g(x)都是偶函数,且在0,+)上单调递增,设函
4、数F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a0,则( )AF(-a)F(a)且F(1+a)F(1-a)BF(-a)F(a)且F(1+a)F(1-a)CF(-a)F(a)且F(1+a)F(1-a)DF(-a)F(a)且F(1+a)F(1-a)二、填空题:本题共4小题,每小题5分,共20分。13已知,且,则的最小值是_.14已知变量 (m0),且,若恒成立,则m的最大值_15已知数列递增的等比数列,若,则_.16已知数列的前项和公式为,则数列的通项公式为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,.(1)求的最小值;(2)若对任意,都
5、有,求实数的取值范围.18(12分)设函数.()讨论函数的单调性;()若函数有两个极值点,求证:.19(12分)如图,已知正方形所在平面与梯形所在平面垂直,BMAN,(1)证明:平面;(2)求点N到平面CDM的距离20(12分)在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位已知曲线C的极坐标方程为2cos ,直线l的参数方程为 (t为参数,为直线的倾斜角)(1)写出直线l的普通方程和曲线C的直角坐标方程;(2)若直线l与曲线C有唯一的公共点,求角的大小21(12分)已知数列的前项和为,且满足,各项均为正数的等比数列满足(1)求数列的通项公式;(2
6、)若,求数列的前项和22(10分)某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,该项质量指标值落在区间内的产品视为合格品,否则视为不合格品,如图是设备改造前样本的频率分布直方图,下表是设备改造后样本的频数分布表.图:设备改造前样本的频率分布直方图表:设备改造后样本的频率分布表质量指标值频数2184814162(1)求图中实数的值;(2)企业将不合格品全部销毁后,对合格品进行等级细分,质量指标值落在区间内的定为一等品,每件售价240元;质量指标值落在区间或内的定为二等品,每件售价180元;其他的合格品定为三等品,每件售价120元,根据
7、表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.若有一名顾客随机购买两件产品支付的费用为(单位:元),求的分布列和数学期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】试题分析:由平面,直线满足,且,所以,又平面,所以,由直线为异面直线,且平面平面,则与相交,否则,若则推出,与异面矛盾,所以相交,且交线平行于,故选D考点:平面与平面的位置关系,平面的基本性质及其推论2D【解析】由成等差数列得,利用等比数列的通项公式展开即可得到公比q的方程.【详解】由题意,
8、2aq2=aq+a,2q2=q+1,q=1或q= 故选:D【点睛】本题考查等差等比数列的综合,利用等差数列的性质建立方程求q是解题的关键,对于等比数列的通项公式也要熟练3D【解析】利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可【详解】解:非零向量,满足,可知两个向量垂直,且与的夹角为,说明以向量,为邻边,为对角线的平行四边形是正方形,所以则故选:【点睛】本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题4B【解析】满足(1)(2)的函数是偶函数且值域关于原点对称,分别对所给函数进行验证.【详解】满足(1)(2)的函数是偶函数且值域关于
9、原点对称,不满足(2);不满足(1);不满足(2);均满足(1)(2).故选:B.【点睛】本题考查新定义函数的问题,涉及到函数的性质,考查学生逻辑推理与分析能力,是一道容易题.5D【解析】由正弦定理可求得,再由角A的范围可求得角A.【详解】由正弦定理可知,所以,解得,又,且,所以或。故选:D.【点睛】本题主要考查正弦定理,注意角的范围,是否有两解的情况,属于基础题.6D【解析】因甲不参加生物竞赛,则安排甲参加另外3场比赛或甲学生不参加任何比赛当甲参加另外3场比赛时,共有=72种选择方案;当甲学生不参加任何比赛时,共有=24种选择方案综上所述,所有参赛方案有72+24=96种故答案为:96点睛:
10、本题以选择学生参加比赛为载体,考查了分类计数原理、排列数与组合数公式等知识,属于基础题7D【解析】利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案【详解】将将函数的图象向左平移个单位长度,可得函数又由函数为偶函数,所以,解得,因为,当时,故选D【点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题8D【解析】作出图象,取AB中点E,连接EF2,设F1Ax,根据双曲线定义可得x2a,再由勾股定理可得到c27a2,进而得到e的值【详解】解:取
11、AB中点E,连接EF2,则由已知可得BF1EF2,F1AAEEB,设F1Ax,则由双曲线定义可得AF22a+x,BF1BF23x2ax2a,所以x2a,则EF22a,由勾股定理可得(4a)2+(2a)2(2c)2,所以c27a2,则e故选:D【点睛】本题考查双曲线定义的应用,考查离心率的求法,数形结合思想,属于中档题对于圆锥曲线中求离心率的问题,关键是列出含有 中两个量的方程,有时还要结合椭圆、双曲线的定义对方程进行整理,从而求出离心率.9A【解析】试题分析:由题意,得,解得,故选A考点:函数的定义域10B【解析】由已知可求出焦点坐标为,可求得幂函数为,设出切点通过导数求出切线方程的斜率,利用
12、斜率相等列出方程,即可求出切点坐标,然后求解双曲线的离心率【详解】依题意可得,抛物线的焦点为,F关于原点的对称点;,所以,设,则,解得, ,可得,又,可解得,故双曲线的离心率是.故选B【点睛】本题考查双曲线的性质,已知抛物线方程求焦点坐标,求幂函数解析式,直线的斜率公式及导数的几何意义,考查了学生分析问题和解决问题的能力,难度一般.11D【解析】充分性中,由向量数乘的几何意义得,再由数量积运算即可说明成立;必要性中,由数量积运算可得,不一定有正数,使得,所以不成立,即可得答案.【详解】充分性:若存在正数,使得,则,得证;必要性:若,则,不一定有正数,使得,故不成立;所以是充分不必要条件故选:D
13、【点睛】本题考查平面向量数量积的运算,向量数乘的几何意义,还考查了充分必要条件的判定,属于简单题.12A【解析】试题分析:由题意得,F(x)=2g(1-x),f(x)g(1-x)2f(x),f(x)g(1-x),F(-a)=2g(1+a),f(a)=f(-a)g(1+a)2f(-a),f(a)=f(-a)g(1+a),F(a)=2g(1-a),f(a)g(1-a)2f(a),f(a)0,(a+1)2-(a-1)2=4a0,|1+a|a-1|g(1+a)g(1-a),若f(a)g(1+a):F(-a)=2g(1+a),F(a)=2g(1-a),F(-a)F(a),若g(1-a)f(a)g(1+a
14、):F(-a)=2f(-a)=2f(a),F(a)=2g(1-a),F(-a)F(a),若f(a)g(1-a):F(-a)=2f(-a)=2f(a),F(a)=2f(a),F(-a)=F(a),综上可知F(-a)F(a),同理可知F(1+a)F(1-a),故选A.考点:1.函数的性质;2.分类讨论的数学思想.【思路点睛】本题在在解题过程中抓住偶函数的性质,避免了由于单调性不同导致1-a与1+a大小不明确的讨论,从而使解题过程得以优化,另外,不要忘记定义域,如果要研究奇函数或者偶函数的值域、最值、单调性等问题,通常先在原点一侧的区间(对奇(偶)函数而言)或某一周期内(对周期函数而言)考虑,然后推
15、广到整个定义域上.二、填空题:本题共4小题,每小题5分,共20分。131【解析】先将前两项利用基本不等式去掉,再处理只含的算式即可【详解】解:,因为,所以,所以,当且仅当,时等号成立,故答案为:1【点睛】本题主要考查基本不等式的应用,但是由于有3个变量,导致该题不易找到思路,属于中档题14【解析】在不等式两边同时取对数,然后构造函数f(x),求函数的导数,研究函数的单调性即可得到结论【详解】不等式两边同时取对数得,即x2lnx1x1lnx2,又即成立,设f(x),x(0,m),x1x2,f(x1)f(x2),则函数f(x)在(0,m)上为增函数,函数的导数,由f(x)0得1lnx0得lnx1,
16、得0 xe,即函数f(x)的最大增区间为(0,e),则m的最大值为e故答案为:e【点睛】本题考查函数单调性与导数之间的应用,根据条件利用取对数得到不等式,从而可构造新函数,是解决本题的关键15【解析】,建立方程组,且,求出,进而求出的公比,即可求出结论.【详解】数列递增的等比数列,解得,所以的公比为,.故答案为:.【点睛】本题考查等比数列的性质、通项公式,属于基础题.16【解析】由题意,根据数列的通项与前n项和之间的关系,即可求得数列的通项公式【详解】由题意,可知当时,;当时,. 又因为不满足,所以.【点睛】本题主要考查了利用数列的通项与前n项和之间的关系求解数列的通项公式,其中解答中熟记数列
17、的通项与前n项和之间的关系,合理准确推导是解答的关键,着重考查了推理与运算能力,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)2;(2).【解析】(1)化简得,所以,展开后利用基本不等式求最小值即可;(2)由(1),原不等式可转化为,讨论去绝对值即可求得的取值范围.【详解】(1),.当且仅当且即时,.(2)由(1)知,对任意,都有,即.当时,有,解得;当,时,有,解得;当时,有,解得;综上,实数的取值范围是.【点睛】本题主要考查基本不等式的运用和求解含绝对值的不等式,考查学生的分类思想和计算能力,属于中档题.18()见解析()见解析【解析】()求导得到,讨论
18、,三种情况得到单调区间.()设,要证,即证,设,根据函数单调性得到证明.【详解】() , 令,(1)当,即时,在上单调递增; (2)当,即时,设的两根为(),若,时,所以在和上单调递增, 时,所以在上单调递减,若,时,所以在上单调递减, 时,所以在上单调递增. 综上,当时,在上单调递增;当时, 在和上单调递增,在上单调递减;当时,在上单调递减,在上单调递增. ()不妨设,要证,即证,即证,由()可知,可得,所以有, 令,所以在单调递增, 所以, 因为,所以,所以.【点睛】本题考查了函数单调性,证明不等式,意在考查学生的分类讨论能力和计算能力.19(1)证明见解析 (2)【解析】(1)因为正方形
19、ABCD所在平面与梯形ABMN所在平面垂直,平面平面,所以平面ABMN,因为平面ABMN,平面ABMN,所以, 因为,所以,因为,所以,所以,因为在直角梯形ABMN中,所以, 所以,所以,因为,所以平面 (2)如图,取BM的中点E,则,又BMAN,所以四边形ABEN是平行四边形,所以NEAB,又ABCD,所以NECD,因为平面CDM,平面CDM,所以NE平面CDM,所以点N到平面CDM的距离与点E到平面CDM的距离相等, 设点N到平面CDM的距离为h,由可得点B到平面CDM的距离为2h,由题易得平面BCM,所以,且,所以, 又,所以由可得,解得,所以点N到平面CDM的距离为 20(1)当 时,直线l方程为x1;当 时,直线l方程为y(x1)tan; x2y22x (2)或.【解析】(1)对直线l的倾斜角分类讨论,消去参数即可求出其普通方程;由,即可求出曲线C的直角坐标方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,根据条件0,即可求解.【详解】(1)当时,直线l的普通方程为x1;当时,消去参数得直线l的普通方程为y(x1)tan .由2cos ,得22cos ,所以x2y22x,即为曲线C的直角坐标方程(2)把x1tc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酱油食醋的发酵过程监测技术考核试卷
- 嵌入式系统开发实战模拟试题及答案
- 有线电视传输网络网络功能虚拟化技术考核试卷
- 金属密封件密封性能优化考核试卷
- 硬件描述语言的应用试题及答案
- 通信设备零售价格策略与弹性分析考核试卷
- 聚乙烯醇缩丙醛纤维应用考核试卷
- 租赁业务中的风险规避措施考核试卷
- 公路工程考试考点总结试题及答案
- 软件测试过程中的挑战与解决方案试题及答案
- 【KAWO科握】2025年中国社交媒体平台指南报告
- 云南2025年云南省社会科学院中国(昆明)南亚东南亚研究院招聘笔试历年参考题库附带答案详解
- 【语文】第23课《“蛟龙”探海》课件 2024-2025学年统编版语文七年级下册
- iso220002024食品安全管理体系标准
- 2024年上海市中考数学真题试卷及答案解析
- 23秋国家开放大学《小学语文教学研究》形考任务1-5参考答案
- 高血压病人的护理(PPT)
- DB11-T 825-2021绿色建筑评价标准
- DB34T 3944-2021 静力触探应用技术规程
- 4例先天性高胰岛素血症患儿的护理
- 民办学校筹设批准书
评论
0/150
提交评论