2021-2022学年石家庄市第四十高考仿真卷数学试卷含解析_第1页
2021-2022学年石家庄市第四十高考仿真卷数学试卷含解析_第2页
2021-2022学年石家庄市第四十高考仿真卷数学试卷含解析_第3页
2021-2022学年石家庄市第四十高考仿真卷数学试卷含解析_第4页
2021-2022学年石家庄市第四十高考仿真卷数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡

2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1两圆和相外切,且,则的最大值为( )AB9CD12已知点是双曲线上一点,若点到双曲线的两条渐近线的距离之积为,则双曲线的离心率为( )ABCD23设函数(,)是上的奇函数,若的图象关于直线对称,且在区间上是单调函数,则( )ABCD4已知集合,则( )ABCD5已知是等差数列的前项和,则( )A85BC35D6一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是( )ABCD7记为等差数列的前项和.若,则( )A5B3C12D13

3、8若直线l不平行于平面,且l,则( )A内所有直线与l异面B内只存在有限条直线与l共面C内存在唯一的直线与l平行D内存在无数条直线与l相交9已知集合,则的真子集个数为( )A1个B2个C3个D4个10的展开式中,含项的系数为( )ABCD11港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间85,90)的车辆数和行驶速度超过90km/h的频率分别为()A300,B

4、300,C60,D60,12设集合,若集合中有且仅有2个元素,则实数的取值范围为ABCD二、填空题:本题共4小题,每小题5分,共20分。13若存在实数使得不等式在某区间上恒成立,则称与为该区间上的一对“分离函数”,下列各组函数中是对应区间上的“分离函数”的有_.(填上所有正确答案的序号),;,;,;,.14已知二项式ax-1x6的展开式中的常数项为-160,则a=_15平面向量,(R),且与的夹角等于与的夹角,则 .16若复数(是虚数单位),则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)对

5、任意,都有恒成立,求实数a的取值范围;(3)证明:对一切,都有成立18(12分)已知在中,内角所对的边分别为,若,且.(1)求的值;(2)求的面积.19(12分)如图,四棱锥中,平面,.()证明:;()若是中点,与平面所成的角的正弦值为,求的长.20(12分)椭圆的右焦点,过点且与轴垂直的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)过点且斜率不为0的直线与椭圆交于,两点.为坐标原点,为椭圆的右顶点,求四边形面积的最大值.21(12分)如图,四棱锥中,四边形是矩形,为正三角形,且平面平面,、分别为、的中点.(1)证明:平面平面;(2)求二面角的余弦值.22(10分)已知椭圆的右焦点为,过点

6、且斜率为的直线与椭圆交于两点,线段的中点为为坐标原点.(1)证明:点在轴的右侧;(2)设线段的垂直平分线与轴、轴分别相交于点.若与的面积相等,求直线的斜率参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】由两圆相外切,得出,结合二次函数的性质,即可得出答案.【详解】因为两圆和相外切所以,即当时,取最大值故选:A【点睛】本题主要考查了由圆与圆的位置关系求参数,属于中档题.2A【解析】设点的坐标为,代入椭圆方程可得,然后分别求出点到两条渐近线的距离,由距离之积为,并结合,可得到的齐次方程,进而可求出离心率的值.【详解】设点的坐

7、标为,有,得.双曲线的两条渐近线方程为和,则点到双曲线的两条渐近线的距离之积为,所以,则,即,故,即,所以.故选:A.【点睛】本题考查双曲线的离心率,构造的齐次方程是解决本题的关键,属于中档题.3D【解析】根据函数为上的奇函数可得,由函数的对称轴及单调性即可确定的值,进而确定函数的解析式,即可求得的值.【详解】函数(,)是上的奇函数,则,所以.又的图象关于直线对称可得,即,由函数的单调区间知,即,综上,则,.故选:D【点睛】本题考查了三角函数的图象与性质的综合应用,由对称轴、奇偶性及单调性确定参数,属于中档题.4C【解析】由题意和交集的运算直接求出.【详解】 集合,.故选:C.【点睛】本题考查

8、了集合的交集运算.集合进行交并补运算时,常借助数轴求解.注意端点处是实心圆还是空心圆.5B【解析】将已知条件转化为的形式,求得,由此求得.【详解】设公差为,则,所以,.故选:B【点睛】本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题.6D【解析】设圆锥的母线长为l,底面半径为R,再表达圆锥表面积与球的表面积公式,进而求得即可得圆锥轴截面底角的大小.【详解】设圆锥的母线长为l,底面半径为R,则有,解得,所以圆锥轴截面底角的余弦值是,底角大小为.故选:D【点睛】本题考查圆锥的表面积和球的表面积公式,属于基础题.7B【解析】由题得,解得,计算可得.【详解】,解得,.故

9、选:B【点睛】本题主要考查了等差数列的通项公式,前项和公式,考查了学生运算求解能力.8D【解析】通过条件判断直线l与平面相交,于是可以判断ABCD的正误.【详解】根据直线l不平行于平面,且l可知直线l与平面相交,于是ABC错误,故选D.【点睛】本题主要考查直线与平面的位置关系,直线与直线的位置关系,难度不大.9C【解析】求出的元素,再确定其真子集个数【详解】由,解得或,中有两个元素,因此它的真子集有3个故选:C.【点睛】本题考查集合的子集个数问题,解题时可先确定交集中集合的元素个数,解题关键是对集合元素的认识,本题中集合都是曲线上的点集10B【解析】在二项展开式的通项公式中,令的幂指数等于,求

10、出的值,即可求得含项的系数【详解】的展开式通项为,令,得,可得含项的系数为.故选:B.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题11B【解析】由频率分布直方图求出在此路段上汽车行驶速度在区间的频率即可得到车辆数,同时利用频率分布直方图能求行驶速度超过的频率【详解】由频率分布直方图得:在此路段上汽车行驶速度在区间的频率为,在此路段上汽车行驶速度在区间的车辆数为:,行驶速度超过的频率为:故选:B【点睛】本题考查频数、频率的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题12B【解析】由题意知且,结合数轴即可求得的取值范围.【详解】由

11、题意知,则,故,又,则,所以,所以本题答案为B.【点睛】本题主要考查了集合的关系及运算,以及借助数轴解决有关问题,其中确定中的元素是解题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由题意可知,若要存在使得成立,我们可考虑两函数是否存在公切点,若两函数在公切点对应的位置一个单增,另一个单减,则很容易判断,对,都可以采用此法判断,对分析式子特点可知,进而判断【详解】时,令,则,单调递增, ,即.令,则,单调递减,即,因此,满足题意.时,易知,满足题意.注意到,因此如果存在直线,只有可能是(或)在处的切线,因此切线为,易知,因此不存在直线满足题意.时,注意到,因此

12、如果存在直线,只有可能是(或)在处的切线,因此切线为.令,则,易知在上单调递增,在上单调递减,所以,即.令,则,易知在上单调递减,在上单调递增,所以,即.因此,满足题意.故答案为:【点睛】本题考查新定义题型、利用导数研究函数图像,转化与化归思想,属于中档题142【解析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项,再根据常数项等于-160求得实数a的值【详解】二项式(ax-1x)6的展开式中的通项公式为Tr+1=C6r(-1)ra6-rx6-2r,令6-2r=0,求得r=3,可得常数项为-C63a3=-160,a=2,故答案为:2【点睛】本题主要考查二项式定理的应用

13、,二项展开式的通项公式,二项式系数的性质,属于基础题152【解析】试题分析:,与的夹角等于与的夹角,所以考点:向量的坐标运算与向量夹角16【解析】直接根据复数的代数形式四则运算法则计算即可【详解】,【点睛】本题主要考查复数的代数形式四则运算法则的应用三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1) (2)( (3)见证明【解析】(1)先求函数导数,再求导函数零点,列表分析导函数符号变化规律确定函数单调性,最后根据函数单调性确定最小值取法;(2)先分离不等式,转化为对应函数最值问题,利用导数求对应函数最值即得结果;(3)构造两个函数,再利用两函数最值关系进行证明.【详解

14、】(1)当时,单调递减,当时,单调递增,所以函数f(x)的最小值为f()=;(2)因为所以问题等价于在上恒成立,记则,因为,令函数f(x)在(0,1)上单调递减;函数f(x)在(1,+)上单调递增;即,即实数a的取值范围为(.(3)问题等价于证明由(1)知道 ,令函数在(0,1)上单调递增;函数在(1,+)上单调递减;所以,因此,因为两个等号不能同时取得,所以即对一切,都有成立.【点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数

15、法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.18(1);(2)【解析】(1)将代入等式,结合正弦定理将边化为角,再将及代入,即可求得的值;(2)根据(1)中的值可求得和,进而可得,由三角形面积公式即可求解.【详解】(1)由,得,由正弦定理将边化为角可得,化简可得,解得.(2)在中,.【点睛】本题考查了正弦定理在边角转化中的应用,正弦差角公式的应用,三角形面积公式求法,属于基础题.19()见解析;()【解析】()取的中点,连接,由,得三点共线,且,又,再利用线面垂直的判定定理证明.()设,则,在底面中,在中,由余弦定理得:,在中,由余弦定理得,两式

16、相加求得,再过作,则平面,即点到平面的距离,由是中点,得到到平面的距离,然后根据与平面所成的角的正弦值为求解.【详解】()取的中点,连接,由,得三点共线,且,又,所以平面,所以.()设,在底面中,在中,由余弦定理得:,在中,由余弦定理得,两式相加得:,所以 ,过作,则平面,即点到平面的距离,因为是中点,所以为到平面的距离,因为与平面所成的角的正弦值为,即,解得.【点睛】本题主要考查线面垂直的判定定理,线面角的应用,还考查了转化化归的思想和空间想象运算求解的能力,属于中档题.20(1)(2)最大值.【解析】(1)根据通径和即可求(2)设直线方程为,联立椭圆,利用,用含的式子表示出,用换元,可得,

17、最后用均值不等式求解.【详解】解:(1)依题意有,所以椭圆的方程为.(2)设直线的方程为,联立,得.所以,.所以.令,则,所以,因,则,所以,当且仅当,即时取得等号,即四边形面积的最大值.【点睛】考查椭圆方程的求法和椭圆中四边形面积最大值的求法,是难题.21(1)见解析;(2)【解析】(1)取中点,中点,连接,.设交于,则为的中点,连接.通过证明,证得平面,由此证得平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值.【详解】(1)取中点,中点,连接,.设交于,则为的中点,连接.设,则,.由已知,平面,.,平面,平面,平面平面.(2)由(1)及已知可得平面,建立如图所示的空间坐标系,设,则,设平面的法向量为,令得.设平面的法向量为,令得,二面角的余弦值为.【点睛】本小题主要考查面面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.22(1)证明见解析(2)【解析】(1)设出直线的方程,与椭圆方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论