2021-2022学年云南省师范大学高三考前热身数学试卷含解析_第1页
2021-2022学年云南省师范大学高三考前热身数学试卷含解析_第2页
2021-2022学年云南省师范大学高三考前热身数学试卷含解析_第3页
2021-2022学年云南省师范大学高三考前热身数学试卷含解析_第4页
2021-2022学年云南省师范大学高三考前热身数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡

2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若圆锥轴截面面积为,母线与底面所成角为60,则体积为( )ABCD2设全集,集合,则集合( )ABCD3一个几何体的三视图如图所示,则这个几何体的体积为( ) ABCD4某大学计算机学院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲从人工智能领域的语音识别、人脸识别,数据分析、机器学习、服务器开发五个方向展开研究,且每个方向均有研究生学习,其中刘泽同学学习人脸识别,则这6名研究生不同的分配方向共有( )A480种B360种C240种D120种5已知函数,将函数的图象向左

3、平移个单位长度后,所得到的图象关于轴对称,则的最小值是( )ABCD6为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本情况经过统计绘制如图,其中各项统计不重复若该市老年低收入家庭共有900户,则下列说法错误的是()A该市总有 15000 户低收入家庭B在该市从业人员中,低收入家庭共有1800户C在该市无业人员中,低收入家庭有4350户D在该市大于18岁在读学生中,低收入家庭有 800 户7已知的内角、的对边分别为、,且,为边上的中线,若,则的面积为( )ABCD8已知直线:过双曲线的一个焦点且与其中一条渐近线平行,则双曲线的方程为( )ABCD9函数的部分图像如图所示,若,点的坐标为,

4、若将函数向右平移个单位后函数图像关于轴对称,则的最小值为( )ABCD10已知函数,若,则a的取值范围为( )ABCD11已知函数是定义在R上的奇函数,且满足,当时,(其中e是自然对数的底数),若,则实数a的值为( )AB3CD12集合的子集的个数是( )A2B3C4D8二、填空题:本题共4小题,每小题5分,共20分。13中,角的对边分别为,且成等差数列,若,则的面积为_14二项式的展开式中所有项的二项式系数之和是64,则展开式中的常数项为_.15已知全集为R,集合,则_.16若的展开式中只有第六项的二项式系数最大,则展开式中各项的系数和是_三、解答题:共70分。解答应写出文字说明、证明过程或

5、演算步骤。17(12分)已知各项均为正数的数列的前项和为,满足,恰为等比数列的前3项(1)求数列,的通项公式;(2)求数列的前项和为;若对均满足,求整数的最大值;(3)是否存在数列满足等式成立,若存在,求出数列的通项公式;若不存在,请说明理由18(12分)如图,在三棱柱中,为的中点,且.(1)求证:平面;(2)求锐二面角的余弦值.19(12分)已知函数的导函数的两个零点为和(1)求的单调区间;(2)若的极小值为,求在区间上的最大值20(12分)如图,在正四棱柱中,已知,.(1)求异面直线与直线所成的角的大小;(2)求点到平面的距离.21(12分)已知椭圆,上、下顶点分别是、,上、下焦点分别是、

6、,焦距为,点在椭圆上.(1)求椭圆的方程;(2)若为椭圆上异于、的动点,过作与轴平行的直线,直线与交于点,直线与直线交于点,判断是否为定值,说明理由.22(10分)某动漫影视制作公司长期坚持文化自信,不断挖掘中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司年至年的年利润关于年份代号的统计数据如下表(已知该公司的年利润与年份代号线性相关).年份年份代号年利润(单位:亿元)()求关于的线性回归方程,并预测该公司年(年份代号记为)的年利润;()当统计表中某年年利润的实际值大于由()中线性回归方程计算出该年利润的估计值时

7、,称该年为级利润年,否则称为级利润年.将()中预测的该公司年的年利润视作该年利润的实际值,现从年至年这年中随机抽取年,求恰有年为级利润年的概率.参考公式:,.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】设圆锥底面圆的半径为,由轴截面面积为可得半径,再利用圆锥体积公式计算即可.【详解】设圆锥底面圆的半径为,由已知,解得,所以圆锥的体积.故选:D【点睛】本题考查圆锥的体积的计算,涉及到圆锥的定义,是一道容易题.2C【解析】集合, 点睛:本题是道易错题,看清所问问题求并集而不是交集.3B【解析】还原几何体可知原几何体为半个

8、圆柱和一个四棱锥组成的组合体,分别求解两个部分的体积,加和得到结果.【详解】由三视图还原可知,原几何体下半部分为半个圆柱,上半部分为一个四棱锥半个圆柱体积为:四棱锥体积为:原几何体体积为:本题正确选项:【点睛】本题考查三视图的还原、组合体体积的求解问题,关键在于能够准确还原几何体,从而分别求解各部分的体积.4B【解析】将人脸识别方向的人数分成:有人、有人两种情况进行分类讨论,结合捆绑计算出不同的分配方法数.【详解】当人脸识别方向有2人时,有种,当人脸识别方向有1人时,有种,共有360种.故选:B【点睛】本小题主要考查简单排列组合问题,考查分类讨论的数学思想方法,属于基础题.5A【解析】化简为,

9、求出它的图象向左平移个单位长度后的图象的函数表达式,利用所得到的图象关于轴对称列方程即可求得,问题得解。【详解】函数可化为:,将函数的图象向左平移个单位长度后,得到函数的图象,又所得到的图象关于轴对称,所以,解得:,即:,又,所以.故选:A.【点睛】本题主要考查了两角和的正弦公式及三角函数图象的平移、性质等知识,考查转化能力,属于中档题。6D【解析】根据给出的统计图表,对选项进行逐一判断,即可得到正确答案.【详解】解:由题意知,该市老年低收入家庭共有900户,所占比例为6%,则该市总有低收入家庭9006%15000(户),A正确,该市从业人员中,低收入家庭共有1500012%1800(户),B

10、正确,该市无业人员中,低收入家庭有1500029%4350(户),C正确,该市大于18 岁在读学生中,低收入家庭有150004%600(户),D错误故选:D.【点睛】本题主要考查对统计图表的认识和分析,这类题要认真分析图表的内容,读懂图表反映出的信息是解题的关键,属于基础题.7B【解析】延长到,使,连接,则四边形为平行四边形,根据余弦定理可求出,进而可得的面积.【详解】解:延长到,使,连接,则四边形为平行四边形,则,在中,则,得,.故选:B.【点睛】本题考查余弦定理的应用,考查三角形面积公式的应用,其中根据中线作出平行四边形是关键,是中档题.8A【解析】根据直线:过双曲线的一个焦点,得,又和其

11、中一条渐近线平行,得到,再求双曲线方程.【详解】因为直线:过双曲线的一个焦点,所以,所以,又和其中一条渐近线平行,所以,所以,所以双曲线方程为.故选:A.【点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题.9B【解析】根据图象以及题中所给的条件,求出和,即可求得的解析式,再通过平移变换函数图象关于轴对称,求得的最小值.【详解】由于,函数最高点与最低点的高度差为,所以函数的半个周期,所以,又,则有,可得,所以,将函数向右平移个单位后函数图像关于轴对称,即平移后为偶函数,所以的最小值为1,故选:B.【点睛】该题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决该题的

12、关键,要求熟练掌握函数图象之间的变换关系,属于简单题目.10C【解析】求出函数定义域,在定义域内确定函数的单调性,利用单调性解不等式【详解】由得,在时,是增函数,是增函数,是增函数,是增函数,由得,解得故选:C.【点睛】本题考查函数的单调性,考查解函数不等式,解题关键是确定函数的单调性,解题时可先确定函数定义域,在定义域内求解11B【解析】根据题意,求得函数周期,利用周期性和函数值,即可求得.【详解】由已知可知,所以函数是一个以4为周期的周期函数,所以,解得,故选:B.【点睛】本题考查函数周期的求解,涉及对数运算,属综合基础题.12D【解析】先确定集合中元素的个数,再得子集个数【详解】由题意,

13、有三个元素,其子集有8个故选:D【点睛】本题考查子集的个数问题,含有个元素的集合其子集有个,其中真子集有个二、填空题:本题共4小题,每小题5分,共20分。13.【解析】由A,B,C成等差数列得出B60,利用正弦定理得进而得代入三角形的面积公式即可得出【详解】A,B,C成等差数列,A+C2B,又A+B+C180,3B180,B60故由正弦定理 ,故 所以SABC,故答案为:【点睛】本题考查了等差数列的性质,三角形的面积公式,考查正弦定理的应用,属于基础题14【解析】由二项式系数性质求出,由二项展开式通项公式得出常数项的项数,从而得常数项【详解】由题意,展开式通项为,由得,常数项为故答案为:【点睛

14、】本题考查二项式定理,考查二项式系数的性质,掌握二项展开式通项公式是解题关键15【解析】先化简集合A,再求AB得解.【详解】由题得A=0,1,所以AB=-1,0,1.故答案为-1,0,1【点睛】本题主要考查集合的化简和并集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.16【解析】由题意得出展开式中共有11项,;再令求得展开式中各项的系数和【详解】由的展开式中只有第六项的二项式系数最大,所以展开式中共有11项,所以;令,可求得展开式中各项的系数和是:故答案为:1【点睛】本小题主要考查二项式展开式的通项公式的运用,考查二项式展开式各项系数和的求法,属于基础题.三、解答题:共70分。解答

15、应写出文字说明、证明过程或演算步骤。17(2),(2),的最大整数是2(3)存在,【解析】(2)由可得(),然后把这两个等式相减,化简得,公差为2,因为,为等比数列,所以,化简计算得,从而得到数列的通项公式,再计算出 ,从而可求出数列的通项公式;(2)令,化简计算得,从而可得数列是递增的,所以只要的最小值大于即可,而的最小值为,所以可得答案;(3)由题意可知,即,这个可看成一个数列的前项和,再写出其前()项和,两式相减得,利用同样的方法可得.【详解】解:(2)由题,当时,即当时, -得,整理得,又因为各项均为正数的数列故是从第二项的等差数列,公差为2又恰为等比数列的前3项,故,解得又,故,因为

16、也成立故是以为首项,2为公差的等差数列故即2,4,8恰为等比数列的前3项,故是以为首项,公比为的等比数列,故综上,(2)令,则 所以数列是递增的,若对均满足,只要的最小值大于即可因为的最小值为,所以,所以的最大整数是2(3)由,得, -得, , -得,所以存在这样的数列,【点睛】此题考查了等差数列与等比数列的通项公式与求和公式,最值,恒成立问题,考查了推理能力与计算能力,属于中档题.18(1)证明见解析;(2).【解析】(1)证明后可得平面,从而得,结合已知得线面垂直;(2)以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,写出各点坐标,求出二面角的面的法向量,由法向量夹角的余弦值得二面角

17、的余弦值【详解】(1)证明:因为,为中点,所以,又,所以平面,又平面,所以,又,所以平面.(2)由已知及(1)可知,两两垂直,所以以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,则,.设平面的法向量,则,即,令,则;设平面的法向量,则,即,令,则,所以.故锐二面角的余弦值为.【点睛】本题考查证明线面垂直,解题时注意线面垂直与线线垂直的相互转化考查求二面角,求空间角一般是建立空间直角坐标系,用向量法易得结论19(1)单调递增区间是,单调递减区间是和;(2)最大值是【解析】(1)求得,由题意可知和是函数的两个零点,根据函数的符号变化可得出的符号变化,进而可得出函数的单调递增区间和递减区间;(

18、2)由(1)中的结论知,函数的极小值为,进而得出,解出、的值,然后利用导数可求得函数在区间上的最大值.【详解】(1),令,因为,所以的零点就是的零点,且与符号相同又因为,所以当时,即;当或时,即.所以,函数的单调递增区间是,单调递减区间是和; (2)由(1)知,是的极小值点,所以有,解得, ,所以因为函数的单调递增区间是,单调递减区间是和.所以为函数的极大值,故在区间上的最大值取和中的最大者,而,所以函数在区间上的最大值是【点睛】本题考查利用导数求函数的单调区间与最值,考查计算能力,属于中等题.20(1);(2).【解析】(1)建立空间坐标系,通过求向量与向量的夹角,转化为异面直线与直线所成的角的大小;(2)先求出面的一个法向量,再用点到面的距离公式算出即可【详解】以为原点,所在直线分别为轴建系,设所以, ,所以异面直线与直线所成的角的余弦值为 ,异面直线与直线所成的角的大小为(2)因为, ,设是面的一个法向量,所以有 即 ,令 , ,故,又,所以点到平面的距离为.【点睛】本题主要考查向量法求异面直线所成角的大小和点到面的距离,意在考查学生的数学建模以及数学运算能力21(1);(2),理由见解析.【解析】(1)求出椭圆的上、下焦点坐标,利用椭圆的定义求得的值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论