![2021-2022学年宿迁市重点高考数学四模试卷含解析_第1页](http://file4.renrendoc.com/view/971e7de38b607da71b0feadb23689e3c/971e7de38b607da71b0feadb23689e3c1.gif)
![2021-2022学年宿迁市重点高考数学四模试卷含解析_第2页](http://file4.renrendoc.com/view/971e7de38b607da71b0feadb23689e3c/971e7de38b607da71b0feadb23689e3c2.gif)
![2021-2022学年宿迁市重点高考数学四模试卷含解析_第3页](http://file4.renrendoc.com/view/971e7de38b607da71b0feadb23689e3c/971e7de38b607da71b0feadb23689e3c3.gif)
![2021-2022学年宿迁市重点高考数学四模试卷含解析_第4页](http://file4.renrendoc.com/view/971e7de38b607da71b0feadb23689e3c/971e7de38b607da71b0feadb23689e3c4.gif)
![2021-2022学年宿迁市重点高考数学四模试卷含解析_第5页](http://file4.renrendoc.com/view/971e7de38b607da71b0feadb23689e3c/971e7de38b607da71b0feadb23689e3c5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知平面平面,且是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为( )AB16CD2已知,则“直线与直线垂直”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件3中国的国旗和国徽上都有五角星,
2、正五角星与黄金分割有着密切的联系,在如图所示的正五角星中,以、为顶点的多边形为正五边形,且,则( )ABCD4如图,在平行四边形中,为对角线的交点,点为平行四边形外一点,且,则( )ABCD5如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中左视图中三角形为等腰直角三角形,则该几何体外接球的体积是( )ABCD6已知甲盒子中有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时从甲乙两个盒子中取出个球进行交换,(a)交换后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则( )ABCD7在菱形中,分别为,的中点,则( )ABC5D8已知是的共轭复
3、数,则( )ABCD9已知函数在上可导且恒成立,则下列不等式中一定成立的是( )A、B、C、D、10已知集合,则=ABCD11定义两种运算“”与“”,对任意,满足下列运算性质:,;() ,则(2020)(20202018)的值为( )ABCD12已知函数,若,,则a,b,c的大小关系是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,满足约束条件则的最小值为_.14以,为圆心的两圆均过,与轴正半轴分别交于,且满足,则点的轨迹方程为_15曲线在点(1,1)处的切线与轴及直线=所围成的三角形面积为,则实数=_。16某几何体的三视图如图所示,且该几何体的体积是3,则正视图的的值
4、_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,为等腰直角三角形,D为AC上一点,将沿BD折起,得到三棱锥,且使得在底面BCD的投影E在线段BC上,连接AE. (1)证明:;(2)若,求二面角的余弦值.18(12分)如图,直角三角形所在的平面与半圆弧所在平面相交于,,,分别为,的中点, 是上异于,的点, .(1)证明:平面平面;(2)若点为半圆弧上的一个三等分点(靠近点)求二面角的余弦值.19(12分)已知圆:和抛物线:,为坐标原点(1)已知直线和圆相切,与抛物线交于两点,且满足,求直线的方程;(2)过抛物线上一点作两直线和圆相切,且分别交抛物线于两点,若直
5、线的斜率为,求点的坐标20(12分)如图,在四棱锥中,四边形是直角梯形, 底面 ,是的中点.(1).求证:平面平面;(2).若二面角的余弦值为,求直线与平面所成角的正弦值.21(12分)已知都是大于零的实数(1)证明;(2)若,证明22(10分)在中,角,所对的边分别为,且求的值;设的平分线与边交于点,已知,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】根据与平面所成的角相等,判断出,建立平面直角坐标系,求得点的轨迹方程,由此求得点的轨迹长度.【详解】由于平面平面,且交线为,所以平面,平面.所以和分别是直线与平
6、面所成的角,所以,所以,即,所以.以为原点建立平面直角坐标系如下图所示,则,设(点在第一象限内),由得,即,化简得,由于点在第一象限内,所以点的轨迹是以为圆心,半径为的圆在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以点的轨迹长度为.故选:C【点睛】本小题主要考查线面角的概念和运用,考查动点轨迹方程的求法,考查空间想象能力和逻辑推理能力,考查数形结合的数学思想方法,属于难题.2B【解析】由两直线垂直求得则或,再根据充要条件的判定方法,即可求解.【详解】由题意,“直线与直线垂直”则,解得或,所以“直线与直线垂直”是“”的必要不充分条件,故选B.【点睛】本题主要考查了两直线的位置关系,
7、及必要不充分条件的判定,其中解答中利用两直线的位置关系求得的值,同时熟记充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.3A【解析】利用平面向量的概念、平面向量的加法、减法、数乘运算的几何意义,便可解决问题【详解】解:.故选:A【点睛】本题以正五角星为载体,考查平面向量的概念及运算法则等基础知识,考查运算求解能力,考查化归与转化思想,属于基础题4D【解析】连接,根据题目,证明出四边形为平行四边形,然后,利用向量的线性运算即可求出答案【详解】连接,由,知,四边形为平行四边形,可得四边形为平行四边形,所以.【点睛】本题考查向量的线性运算问题,属于基础题5C【解析】作出三视图所
8、表示几何体的直观图,可得直观图为直三棱柱,并且底面为等腰直角三角形,即可求得外接球的半径,即可得外接球的体积.【详解】如图为几何体的直观图,上下底面为腰长为的等腰直角三角形,三棱柱的高为4,其外接球半径为,所以体积为.故选:C【点睛】本题考查三视图还原几何体的直观图、球的体积公式,考查空间想象能力、运算求解能力,求解时注意球心的确定.6A【解析】分析:首先需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望.详解:根据题意有,如果交换一个球,有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝
9、球、甲盒的蓝球交换的乙盒的红球,红球的个数就会出现三种情况;如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,对应的红球的个数就是五种情况,所以分析可以求得,故选A.点睛:该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可取值会分析是多少,利用期望公式求得结果.7B【解析】据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.【详解】设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,则,所以.
10、故选:B.【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.8A【解析】先利用复数的除法运算法则求出的值,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b【详解】i,a+bii,a0,b1,a+b1,故选:A【点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题9A【解析】设,利用导数和题设条件,得到,得出函数在R上单调递增,得到,进而变形即可求解.【详解】由题意,设,则,又由,所以,即函数在R上单调递增,则,即,变形可得.故选:A.【点睛】本题主要考查了利用
11、导数研究函数的单调性及其应用,以及利用单调性比较大小,其中解答中根据题意合理构造新函数,利用新函数的单调性求解是解答的关键,着重考查了构造思想,以及推理与计算能力,属于中档试题.10C【解析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养采取数轴法,利用数形结合的思想解题【详解】由题意得,则故选C【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分11B【解析】根据新运算的定义分别得出2020和20202018的值,可得选项.【详解】由() ,得(+2),又,所以, ,以此类推,202020182018,又,所以, ,以此类推,2020,所以(
12、2020)(20202018),故选:B.【点睛】本题考查定义新运算,关键在于理解,运用新定义进行求值,属于中档题.12D【解析】根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可得在上为增函数,又由,分析可得答案【详解】解:根据题意,函数,其导数函数,则有在上恒成立,则在上为增函数;又由,则;故选:【点睛】本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13【解析】画出可行域,通过平移基准直线到可行域边界位置,由此求得目标函数的最小值.【详解】画出可行域如下图所示,由图可知:可行域是由三点,构成的三角形及其内部
13、,当直线过点时,取得最小值.故答案为:【点睛】本小题主要考查利用线性规划求目标函数的最值,考查数形结合的数学思想方法,属于基础题.14【解析】根据圆的性质可知在线段的垂直平分线上,由此得到,同理可得,由对数运算法则可知,从而化简得到,由此确定轨迹方程.【详解】,和的中点坐标为,且在线段的垂直平分线上,即,同理可得:,点的轨迹方程为故答案为:【点睛】本题考查动点轨迹方程的求解问题,关键是能够利用圆的性质和对数运算法则构造出满足的方程,由此得到结果.15或1【解析】利用导数的几何意义,可得切线的斜率,以及切线方程,求得切线与轴和的交点,由三角形的面积公式可得所求值【详解】的导数为,可得切线的斜率为
14、3,切线方程为,可得,可得切线与轴的交点为,切线与的交点为,可得,解得或。【点睛】本题主要考查利用导数求切线方程,以及直线方程的运用,三角形的面积求法。163【解析】 由已知中的三视图可得该几何体是一个以直角梯形为底面,梯形上下边长为和,高为, 如图所示,平面, 所以底面积为, 几何体的高为,所以其体积为 点睛:在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观
15、图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析;(2)【解析】(1)由折叠过程知与平面垂直,得,再取中点,可证与平面垂直,得,从而可得线面垂直,再得线线垂直;(2)由已知得为中点,以为原点,所在直线为轴,在平面内过作的垂线为轴建立空间直角坐标系,由已知求出线段长,得出各点坐标,用平面的法向量计算二面角的余弦【详解】(1)易知与平面垂直,连接,取中点,连接,由得,平面,平面,又,平面,;(2)由,知是中点,令,则,由,解得,故以为原点,所在直线为轴,在平面内过作的垂线为轴建立空间直角坐标系,如图,则
16、,设平面的法向量为,则,取,则又易知平面的一个法向量为,二面角的余弦值为【点睛】本题考查证明线线垂直,考查用空间向量法求二面角证线线垂直,一般先证线面垂直,而证线面垂直又要证线线垂直,注意线线垂直、线面垂直及面面垂直的转化求空间角,常用方法就是建立空间直角坐标系,用空间向量法求空间角18(1)详见解析;(2).【解析】(1)由直径所对的圆周角为,可知,通过计算,利用勾股定理的逆定理可以判断出为直角三角形,所以有.由已知可以证明出,这样利用线面垂直的判定定理可以证明平面,利用面面垂直的判定定理可以证明出平面平面;(2)以为坐标原点,分别以垂直于平面向上的方向、向量所在方向作为轴、轴、轴的正方向,
17、建立如图所示的空间直角坐标系,求出相应点的坐标,求出平面的一个法向量和平面的法向量,利用空间向量数量积运算公式,可以求出二面角的余弦值.【详解】解:(1)证明:因为半圆弧上的一点,所以.在中,分别为的中点,所以,且.于是在中, ,所以为直角三角形,且. 因为,,所以. 因为, 所以平面.又平面,所以平面平面. (2)由已知,以为坐标原点,分别以垂直于、向量所在方向作为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,则,, ,. 设平面的一个法向量为,则即,取,得. 设平面的法向量,则即,取,得. 所以, 又二面角为锐角,所以二面角的余弦值为. 【点睛】本题考查了利用线面垂直判定面面垂直、利用
18、空间向量数量积求二面角的余弦值问题.19(1);(2)或【解析】试题分析: 直线与圆相切只需圆心到直线的距离等于圆的半径,直线与曲线相交于两点,且满足,只需数量积为0,要联立方程组设而不求,利用坐标关系及根与系数关系解题,这是解析几何常用解题方法,第二步利用直线的斜率找出坐标满足的要求,再利用两直线与圆相切,求出点的坐标.试题解析:(1)解:设,由和圆相切,得由消去,并整理得,由,得,即,或(舍)当时,故直线的方程为(2)设,则设,由直线和圆相切,得,即设,同理可得:故是方程的两根,故由得,故同理,则,即,解或当时,;当时,故或20(1)见解析;(2).【解析】试题分析:(1)根据平面有,利用勾股定理可证明,故平面,再由面面垂直的判定定理可证得结论;(2)在点建立空间直角坐标系,利用二面角的余弦值为建立方程求得,在利用法向量求得和平面所成角的正弦值.试题解析:() 平面平面因为,所以,所以,所以,又,所以平面.因为平面,所以平面平面()如图,以点为原点, 分别为轴、轴、轴正方向,建立空间直角坐标系,则.设,则取,则为面法向量设为面的法向量,则,即,取,则依题意,则于是设直线与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 远程教育在宠物行业人才培养中的应用
- 风险导向下企业内部财务控制的改进措施研究
- 餐饮应急预案
- 监控施工方案范文(6篇)
- 二手机械销售合同模板
- KTV装修合同执行管理制度范文
- 不锈钢建筑材料加工合同
- 交通损害赔偿合同示例
- 业务合作及分成合同书
- 个人创业借款合同条款
- 2024至2030年中国壁球行业调查及市场前景咨询报告
- 《电子技术基础(第二版)》中职技工全套教学课件
- 人教版五年级上册小数乘除法竖式计算题200道及答案
- 五年级上册美术《传统门饰》课件
- DL∕T 1309-2013 大型发电机组涉网保护技术规范
- (2020版)煤矿安全生产标准化管理体系评分表
- 城乡低保待遇协议书
- DL-T5153-2014火力发电厂厂用电设计技术规程
- 华为HCIA-Storage H13-629考试练习题
- 辽宁省抚顺五十中学2024届中考化学全真模拟试卷含解析
- 2024年中国科学技术大学少年创新班数学试题真题(答案详解)
评论
0/150
提交评论