版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第3讲 空间向量及其运算的坐标表示新课标要求了解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示。掌握空间向量的线性运算及其坐标表示。掌握空间向量的数量积及其坐标表示。知识梳理1.空间向量运算的坐标表示若a(a1,a2,a3),b(b1,b2,b3),则:(1)ab(a1b1,a2b2,a3b3);(2)ab(a1b1,a2b2,a3b3);(3)a(a1,a2,a3)(R);(4)aba1b1a2b2a3b3;(5)ab aba1b1,a2b2,a3b3(R);(6)abab0a1b1a2b2a3b30;(7)|a|eq r(aa) eq r(aoal(2,1)aoal(2,2)
2、aoal(2,3);(8)cosa,beq f(ab,|a|b|)eq f(a1b1a2b2a3b3,r(aoal(2,1)aoal(2,2)aoal(2,3)r(boal(2,1)boal(2,2)boal(2,3) .2空间中向量的坐标及两点间的距离公式在空间直角坐标系中,设A(a1,b1,c1),B(a2,b2,c2),则:(1)eq o(AB,sup6()(a2a1,b2b1,c2c1);(2)dAB|eq o(AB,sup6()| eq r(a2a12b2b12c2c12) .名师导学知识点1 空间直角坐标系【例1-1】(武汉期末)点,2,关于平面对称的点的坐标是A,2,B,C,2,
3、D,【分析】点,2,关于平面对称的点,即,不变,变为相反数解:点,2,关于平面对称的点,即,不变,变为相反数,点,2,关于平面对称的点的坐标是,故选:【变式训练1-1】(河南月考)在空间直角坐标系中,点,关于轴对称的点为A,B,C,2,D,2,【分析】空间直角坐标系中,点关于轴对称,则值不变,和的值改变符号解:空间直角坐标系中,点,关于轴对称的点为,故选:知识点2 空间向量的坐标运算【例2-1】(钦州期末)已知,2,则等于A,B,0,C,0,D,0,【分析】利用向量坐标运算性质即可得出解:,2,0,故选:【例2-2】(济南模拟)已知空间三点A(2,0,2),B(1,1,2),C(3,0,4),
4、设aeq o(AB,sup6(),beq o(AC,sup6().(1)求a与b夹角的余弦值;(2)若kab与ka2b互相垂直,求k的值;(3)设|c|3,ceq o(BC,sup6(),求c.【分析】对于(1)直接套两向量的夹角公式即可;对于(2)将向量垂直,转化为数量积为0求解;对于(3)利用共线向量求解(1)aeq o(AB,sup6()(1,1,0),beq o(AC,sup6()(1,0,2),ab1(1)10021,|a|eq r(2),|b|eq r(5),cosa,beq f(ab,|a|b|)eq f(r(10),10).(2)kabk(1,1,0)(1,0,2)(k1,k,
5、2),ka2bk(1,1,0)2(1,0,2)(k2,k,4)(kab)(ka2b),(k1)(k2)k280,即2k2k100,得k2或keq f(5,2).(3)ceq o(BC,sup6(),又eq o(BC,sup6()(2,1,2),设c(2,2),又|c|3,(2)2()2(2)29,得1.c(2,1,2)或c(2,1,2)【变式训练2-1】(菏泽期末模拟)已知a(2,1,3),b(0,1,2)求:(1)ab;(2)2a3b;(3)ab;(4)(ab)(ab)【分析】利用空间向量坐标运算公式计算即可.(1)a(2,1,3),b(0,1,2)ab(20,11,32)(2,2,5)(2
6、)2a3b2(2,1,3)3(0,1,2)(4,2,6)(0,3,6)(4,1,0)(3)ab(2,1,3)(0,1,2)20(1)(1)327.(4)|a|eq r(221232)eq r(14),|b|eq r(021222)eq r(5),(ab)(ab)a2b21459.【变式训练2-2】(烟台期末)已知A(1,0,0),B(0,1,1),若eq o(OA,sup6()eq o(OB,sup6()与eq o(OB,sup6()(O为坐标原点)的夹角为120,则的值为()A.eq f(r(6),6) Beq f(r(6),6)Ceq f(r(6),6) Deq r(6)【分析】利用向量数
7、量积的计算公式变形和已知条件,将坐标带代入计算即可.eq o(OA,sup6()eq o(OB,sup6()(1,),eq o(OB,sup6()(0,1,1),cos 120eq f(o(OA,sup6()o(OB,sup6()o(OB,sup6(),|avs4al(o(OA,sup6()o(OB,sup6()|o(OB,sup6()|)eq f(2,r(221)r(2)eq f(1,2),可得0,解得eq f(r(6),6).知识点3 空间两点间的距离【例3-1】(淄博调研)已知ABC的三个顶为A(3,3,2),B(4,3,7),C(0,5,1),则BC边上的中线长为()A2 B3C4 D
8、5【分析】先求出BC中点D的坐标,再代入两点间距离公式即可计算.B(4,3,7),C(0,5,1),BC边上的中点D(2,1,4)又A(3,3,2),|AD| eq r(232132422)3.【变式训练3-1】(温州期中)点,2,是空间直角坐标系中的一点,点关于轴对称的点的坐标为 ,【分析】点,关于轴对称的点的坐标为,利用两点间距离公式能求出解:点,2,是空间直角坐标系中的一点,点关于轴对称的点的坐标为,故,名师导练A组-应知应会1(安徽期末)空间直角坐标系中,点,关于点,2,的对称点的坐标为A,1,B,5,C,D,3,【分析】利用对称的性质和中点坐标公式直接求解解:设空间直角坐标系中,点,
9、关于点,2,的对称点的坐标为,则,解得,点坐标为,5,故选:2(金牛区校级期中)点,2,关于平面的对称点为A,B,2,C,D,2,【分析】根据点,关于平面的对称点为,写出即可解:点,2,关于平面的对称点为,2,故选:3(东阳市校级月考)已知点,则点关于原点的对称点坐标为A,2,B,2,C,D,2,【分析】点,关于原点对称的点的坐标为,解:点,点关于原点的对称点坐标为,2,故选:4(茂名期末)已知向量及则等于A,1,B,5,C,D,【分析】根据空间向量的坐标运算,求和即可解:由向量,所以,1,故选:5(高安市校级期末)已知空间向量ABC2D0【分析】利用空间向量运算法则、向量相等的性质直接求解解
10、:空间向量,1,0,0,解得,故选:6(丰台区期末)已知,3,5,那么向量A,B,2,C,8,D,15,【分析】利用向量即可得出解:向量,5,3,2,故选:7(多选)(三明期末)如图,在长方体中,以直线,分别为轴、轴、轴,建立空间直角坐标系,则A点的坐标为,5,B点关于点对称的点为,8,C点关于直线对称的点为,5,D点关于平面对称的点为,5,【分析】利用空间点的对称性即可得出解:由图形及其已知可得:点的坐标为,5,点,5,关于点对称的点为,5,点关于直线对称的点为,5,点,5,关于平面对称的点为,5,因此正确故选:8(公安县期末)在空间直角坐标系中,已知两点,1,与,关于坐标平面对称,则【分析
11、】根据空间直角坐标系坐标的对称的结论:点,关于平面对称的点坐标为,可知答案解:在空间直角坐标系中,两点,1,与,关于坐标平面对称,故9(温州期末)在平面直角坐标系中,点关于轴的对称点为,那么,在空间直角坐标系中,2,关于轴的对称轴点坐标为 ,若点,关于平面的对称点为点,则【分析】在空间直角坐标系中,2,关于轴的对称轴点坐标为横坐标不变,纵坐标和竖坐标变为原不的相反数,若点,关于平面的对称点为点,横、纵坐标均不变,竖坐标变为原不的相反数,再由两点间距离公式能求出解:在空间直角坐标系中,2,关于轴的对称轴点坐标为,若点,关于平面的对称点为点,则,故,10(浙江期中)空间直角坐标系中,点,关于轴的对
12、称点坐标是 ;【分析】根据空间直角坐标系中,点,关于轴的对称点坐标是,;以及两点间的距离公式,计算即可解:空间直角坐标系中,点,关于轴的对称点坐标是,1,;故,1,11(兴庆区校级期末)已知,0,0,则 【分析】进行向量坐标的加法和数乘运算即可解:,0,故,12(辽阳期末)已知向量,则 【分析】利用空间向量坐标运算法则直接求解解:,1,故,1,13(越秀区期末)已知点,2,和向量,4,若,则点的坐标是 【分析】设,由向量坐标运算法则和向量相等的定义得,8,由此能求出点坐标解:点,2,和向量,4,设,则,8,解得,点的坐标,10,故,10,14(黄浦区校级月考)已知向量,则 【分析】先利用向量坐
13、标运算法则求出,由此能求出解:向量,3,故1315(青铜峡市校级月考)已知点,关于点,2,的对称点分别为,若,3,1,求点的坐标【分析】由题意可知,且是线段和的中点,根据向量坐标运算性质即可得出解:由题意可知,且是线段和的中点,设,则所以,解得点的坐标为,2,16(福建期中)已知空间三点,2,1,0,(1)求向量的夹角的余弦值,(2)若向量垂直,求实数的值【分析】(1),计算可得(2)向量垂直,可得,即可得出解:(1),(2)向量垂直,解得17(扶余县校级月考)()设向量,5,0,0,求:、()已知点,和向量,2,求点坐标,使向量与同向,且【分析】()利用空间向量运算法则能求出、()点,和向量
14、,2,设点,由向量与同向,且,列出方程组能求出点坐标解:()向量,5,0,0,5,0,5,5,0,0,5,()点,和向量,2,设点,向量与同向,且,解得,点坐标为,2,B组-素养提升1.(襄阳期中)已知向量,是空间的一个单位正交基底,向量,是空间的另一个基底,若向量在基底,下的坐标为,2,则它在,下的坐标为ABCD【分析】可设向量,0,1,0,;由此求出向量、,再设,列方程组求出、和即可解:设向量,0,1,0,;则向量,1,又向量,2,不妨设,则,2,即,解得,所以向量在,下的坐标为,故选:2. (安庆质检)已知空间三点A(0,2,3),B(2,1,6),C(1,1,5)(1)若eq o(AP
15、,sup6()eq o(BC,sup6(),且|eq o(AP,sup6()|2eq r(14),求点P的坐标;(2)求以eq o(AB,sup6(),eq o(AC,sup6()为邻边的平行四边形的面积(1)eq o(AP,sup6()eq o(BC,sup6(),设eq o(AP,sup6()eq o(BC,sup6(),又eq o(BC,sup6()(3,2,1),eq o(AP,sup6()(3,2,),又|eq o(AP,sup6()| eq r(92422)2eq r(14),得2,eq o(AP,sup6()(6,4,2)或eq o(AP,sup6()(6,4,2)又A(0,2,3),设P(x,y,z),eq blcrc (avs4alco1(x06,,y24,,z32)或eq blcrc (avs4alco1(x06,,y24,,z32,)得eq blcrc (avs4alco1(x6,,y2,,z1)或eq blcrc (avs4alco1(x6,,y6,,z5.)P(6,2,1)或(6,6,5)(2)eq o(AB,sup6()(2,1,3),eq o(A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度电动车救护车服务合同
- 2024年度秦皇岛市供水合同
- 2024年度北京邮电大学校园体育设施采购合同
- 《黄金发展历史》课件
- 《钳工技能要求》课件
- 《铁路运输》课件
- 睡觉安全比一比课件
- 2024年度品牌形象推广与电商代运营合同2篇
- 工业网络控制技术 课件 项目10 综合网络应用
- 2024年度电商物流合作协议
- 4.《多种多样的动物》教学设计
- GB∕T 15829-2021 软钎剂 分类与性能要求
- 《烟草法律法规培训》PPT课件
- 南充市物业服务收费管理实施细则
- 浦东新区“十一五”学科带头人、骨干教师培养和发展方案
- 户外广告设施检验规范
- 亚热带常用100种树种
- 实验7-74ls90任意进制计数器.ppt
- 电气安装施工记录表格(共46页)
- GB T 197-2018 普通螺纹 公差(高清版)
- 学前卫生学:集体儿童保健
评论
0/150
提交评论