沪科版八年级数学下册期末总复习课件ppt_第1页
沪科版八年级数学下册期末总复习课件ppt_第2页
沪科版八年级数学下册期末总复习课件ppt_第3页
沪科版八年级数学下册期末总复习课件ppt_第4页
沪科版八年级数学下册期末总复习课件ppt_第5页
已阅读5页,还剩93页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、沪科版八年级数学下册期末总复习二次根式复习本章知识(一)、二次根式概念及意义.像 、 这样表示 的 _,且根号内含有字母的代数式叫做二次根式。一个数的_也叫做二次根式。算术平方根算术平方根注意:被开方数大于或等于零判断下列各式哪些是二次根式?题型1:确定二次根式中被开方数所含字母的取值范围.1. 当 _时, 有意义。2. 若 + 3.求下列二次根式中字母的取值范围解得 - 5x3解: 说明:二次根式被开方数不小于0,所以求二次根式中字母的取值范围常转化为不等式(组) 3a=4有意义的条件是 .题型2:二次根式的非负性的应用.4.已知: + =0,求 x-y 的值.5.已知x,y为实数,且 +

2、3(y-2)2 =0,则x-y的值为( ) A.3 B.-3 C.1 D.-1解:由题意,得 x-4=0 且 2x+y=0解得 x=4,y=-8x-y=4-(-8)= 4+ 8 =12D(二)、二次根式的性质:本章知识(二)二次根式的简单性质 练习:计算(二)二次根式的简单性质 练习:计算积的算术平方根 积的算术平方根,等于积中各因式的算术平方根的积(a、b都是非负数)。 (二)二次根式的简单性质 商的算术平方根 商的算术平方根等于被除式的算术平方根除以除式的算术平方根 (二)二次根式的简单性质 基础训练BA(1)下列各式不是二次根式的是( )(3)选择:下列计算正确的是( )( )( )CC

3、 把被开方数的积作为积的被开方数 (三)二次根式的乘法 (三)二次根式的除法 把被开方数的商作为商的被开方数 练习:计算(四)二次根式的运算 3、实数在数轴上的位置如图示,化简|a-1|+ 。能力冲浪4、请计算a= , b= , 求 a2b-ab2 的值能力冲浪6.若方程 ,则 x_ 5. 若数轴上表示数x的点在原点的左边,则化简|3x+ x2| 的结果是( ) A.-4x B.4x C.-2x D.2xC7.一个台阶如图,阶梯每一层高15cm,宽25cm,长60cm.一只蚂蚁从A点爬到B点最短路程是多少?251515256060AB解:B151525256060AABPDC若点P为线段CD上

4、动点。已知ABP的一边AB=(2)如图所示,ADDC于D,BCCD于C,则AD=_ BC=_12(1)在如图所示的44的方格中画出格点ABP,使 三角形的三边为 拓展1ABPDC若点P为线段CD上动点。已知ABP的一边AB=(2)如图所示,ADDC于D,BCCD于C,则AD=_ BC=_12(1)在如图所示的44的方格中画出格点ABP,使 三角形的三边为 拓展1ABPDC若点P为线段CD上动点。已知ABP的一边AB=(2)如图所示,ADDC于D,BCCD于C,则AD=_ BC=_12(1)在如图所示的44的方格中画出格点ABP,使 三角形的三边为 拓展1ABPDC若点P为线段CD上动点。已知A

5、BP的一边AB=(2)如图所示,ADDC于D,BCCD于C,则AD=_ BC=_12(1)在如图所示的44的方格中画出格点ABP,使 三角形的三边为 拓展1ABPDC若点P为线段CD上动点。已知ABP的一边AB=(2)如图所示,ADDC于D,BCCD于C,则AD=_ BC=_12(1)在如图所示的44的方格中画出格点ABP,使 三角形的三边为 拓展1ABPDC若点P为线段CD上动点。已知ABP的一边AB=(2)如图所示,ADDC于D,BCCD于C,则AD=_ BC=_12(1)在如图所示的44的方格中画出格点ABP,使 三角形的三边为 拓展1ABPDC若点P为线段CD上动点。已知ABP的一边A

6、B=(2)如图所示,ADDC于D,BCCD于C,则AD=_ BC=_12(1)在如图所示的44的方格中画出格点ABP,使 三角形的三边为 拓展2 设DP=a,请用含a的代数式表示AP,BP。则AP=_,BP=_。 当a=1 时,则PA+PB=_,当a=3,则PA+PB=_ PA+PB是否存在一个最小值? 一元二次方程复习本章知识网络 概念:-一般形式:ax2+bx+c=0(a0) 直接开平方法:x2=p(p0) (mx+n)2 =p(p0) 解法 配方法 一 公式法: 因式分解法:(ax+b)(cx+d)=0 元 判别式:b2-4ac=0 判别式 不解方程,判别方程根的情况, 二 用处 求方程

7、中待定常数的值或取值范围, 进行有关的证明, 次 关系: x1+x2=-b/a x1.x2=c/a 已知方程的一个根,求另一个根及字母的值, 方 根与系数的关系 求与方程的根有关的代数式的值, 用处 求作一元二次方程, 程 已知两数的和与积,求此两数 判断方程两根的特殊关系, 实际问题与一元二次方程:审,设,列.解,验,答,1.一元二次方程的概念 只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。2、一元二次方程的一般形式 一般地,任何一个关于x 的一元二次方程都可以化为 的形式,我们把(a,b,c为常数,a0)称为一元二次方程的一般形式。1.直接开平方法对于形如ax2=p

8、(p0)或(mx+n)2=p(po)的方程可以用直接开平方法解2.配方法用配方法解一元二次方程的步骤:1.化1:把二次项系数化为1(方程两边都除以二次项系数);2.移项:把常数项移到方程的右边;3.配方:方程两边都加上一次项系数绝对值一半的平方;4.变形:方程左分解因式,右边合并同类;5.开方:根据平方根意义,方程两边开平方;6.求解:解一元一次方程;7.定解:写出原方程的解.我们通过配成完全平方式的方法,得到了一元二次方程的根,这种解一元二次方程的方法称为配方法3.公式法一般地,对于一元二次方程 ax2+bx+c=0(a0) 上面这个式子称为一元二次方程的求根公式.用求根公式解一元二次方程的

9、方法称为公式法(老师提示:用公式法解一元二次方程的前提是:1.必需是一般形式的一元二次方程: ax2+bx+c=0(a0). 2.b2-4ac0.公式法是这样生产的你能用配方法解方程 ax2+bx+c=0(a0) 吗?心动 不如行动1.化1:把二次项系数化为1;3.配方:方程两边都加上一次项系数绝对值一半的平方;4.变形:方程左分解因式,右边合并同类;5.开方:根据平方根意义,方程两边开平方;6.求解:解一元一次方程;7.定解:写出原方程的解.2.移项:把常数项移到方程的右边;4.分解因式法当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解.这种用

10、分解因式解一元二次方程的方法称为分解因式法.老师提示:1.用分解因式法的条件是:方程左边易于分解,而右边等于零;2. 关键是熟练掌握因式分解的知识;3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.”ax2+c=0 =ax2+bx=0 =ax2+bx+c=0 =因式分解法公式法(配方法)2、公式法虽然是万能的,对任何一元二次方程都适用,但不一定 是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法)3、方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式

11、再选取合理的方法。1、直接开平方法因式分解法我们知道:代数式b2-4ac对于方程的根起着关键的作用.一元二次方程的根的判别式若方程有两个 不相等的实数根,则b2-4ac0 回顾与反思判别式逆定理若方程有两个 相等的实数根,则b2-4ac=0若方程没有实数根,则b2-4ac0若方程有两个 实数根,则b2-4ac0判别式的用处1.不解方程.判别方程根的情况,2.根据方程根的情况,确定方程中待定常数的值或取值范围,3.进行有关的证明,一元二次方程根与系数的关系设x1,x2是一元二次方程ax2+bx+c=0(a0)的两个根,则有x1+x2= , x1x2= .解应用题列方程解应用题的一般步骤是:1.审

12、:审清题意:已知什么,求什么?已,未知之间有什么关系?2.设:设未知数,语句要完整,有单位(同一)的要注明单位;3.列:列代数式,列方程;4.解:解所列的方程;5.验:是否是所列方程的根;是否符合题意;6.答:答案也必需是完事的语句,注明单位且要贴近生活.列方程解应用题的关键是:找出相等关系.回顾与复习51.数字与方程 例1.一个两位数,它的十位数字比个位数字小3,而它的个位数字的平方恰好等于这个两位数.求这个两位数.数字与方程例2.有一个两位数,它的十位数字与个位数字的和是5.把这个两位数的十位数字与个位数字互换后得到另一个两位数,两个两位数的积为763.求原来的两位数.2.几何与方程例1

13、.一块长方形草地的长和宽分别为20cm和15cm,在它的四周外围环绕着宽度相等的小路.已知小路的面积为246cm2,求小路的宽度. 201515+2x20+2x几何与方程例2. 如图,在一块长92m,宽60m的矩形耕地上挖三条水渠,水渠的宽度都相等.水渠把耕地分成面积均为885m2的6个矩形小块,水渠应挖多宽.几何与方程例3. 将一条长为56cm的铁丝剪成两段,并把每一段围成一个正方形.(1).要使这两个正方形的面积之和等于100cm2,该怎样剪?(2).要使这两个正方形的面积之和等于196cm2,该怎样剪?(3).这两个正方形的面积之和可能等于200m2吗?例1.甲公司前年缴税40万元,今年

14、缴税48.4万元.该公司缴税的年平均增长率为多少?3.增长率与方程基本数量关系:a(1+x)2=b例2.某公司计划经过两年把某种商品的生产成本降低19%,那么平均每年需降低百分之几?增长率与方程例1.一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共握了66次手.这次会议到会的人数是多少?4.美满生活与方程思考(广东中考)(本题满分9分) 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?例2.小明将勤工助学挣得的500元钱按一年

15、定期存入银行,到期后取出50元用来购买学习用品 剩下的450元连同应得的税后利息又全部按一年定期存入银行如果存款的年利率保持不变,且到期后可得税后本息约461元,那么这种存款的年利率大约是多少? (精确到0.01%) .美满生活与方程例.某果园有100棵桃树,一棵桃树平均结1000个桃子,现准备多种一些桃树以提高产量.试验发现,每多种一棵桃树,每棵棵桃树的产量就会减少2个.如果要使产量增加15.2%,那么应种多少棵桃树?5.经济效益与方程6.我是商场精英例.某商场销售一批名牌衬衫,现在平均每天能售出20件,每件盈利40元.为了尽快减少库存,商场决定采取降价措施.经调查发现:如果这种衬衫的售价每

16、降低1元时,平均每天能多售出2件.商场要想平均每天盈利1200元,每件衬衫应降价多少元?例. 某商店从厂家以每件21元的价格购进一批商品,若每件商品售价为x元,则每天可卖出(350-10 x)件,但物价局限定每件商品加价不能超过进价的20%.商店要想每天赚400元,需要卖出多少年来件商品?每件商品的售价应为多少元?7.利润与方程回味无穷小结 拓展列方程解应用题的一般步骤是:1.审:审清题意:已知什么,求什么?已,未知之间有什么关系?2.设:设未知数,语句要完整,有单位(同一)的要注明单位;3.列:列代数式,列方程;4.解:解所列的方程;5.验:是否是所列方程的根;是否符合题意;6.答:答案也必

17、需是完事的语句,注明单位且要贴近生活.列方程解应用题的关键是:找出相等关系.关于两次平均增长(降低)率问题的一般关系:a(1x)2=A(其中a表示基数,x表表示增长(或降低)率,A表示新数)勾股定理复习课一、知识要点如果直角三角形两直角边分别为a,b,斜边为c,那么勾股定理a2 + b2 = c2即直角三角形两直角边的平方和等于斜边的平方.勾股逆定理 如果三角形的三边长a,b,c满足a2 +b2=c2 ,那么这个三角形是直角三角形 满足a2 +b2=c2的三个正整数,称为勾股数勾 股 数二、练习(一)、填空题1、在RtABC中,C=90, 若a=5,b=12,则c=_; 若a=15,c=25,

18、则b=_; 若c=61,b=60,则a=_; 若ab=34,c=10则SRtABC=_。 2、直角三角形两直角边长分别为5和12,则它 斜边上的高为_。 1320112460/13二、练习(二)、选择题1已知一个Rt的两边长分别为3和4,则第三 边长的平方是() A、25 B、14C、7D、7或252下列各组数中,以a,b,c为边的三角形不是 Rt的是() A、a=1.5,b=2,c=3 B、a=7,b=24,c=25 C、a=6,b=8,c=10 D、a=3,b=4,c=5DA二、练习3若线段a,b,c组成Rt,则它们的比为() A、234 B、346C、51213D、4674如果Rt两直角

19、边的比为512,则斜边上的 高与斜边的比为() A、6013B、512 C、1213 D、60169CD二、练习5如果Rt的两直角边长分别为n21,2n(n1), 那么它的斜边长是() A、2nB、n+1C、n21 D、n2+16已知RtABC中,C=90,若a+b=14cm, c=10cm,则RtABC的面积是() A、24cm2B、36cm2 C、48cm2 D、60cm27等腰三角形底边上的高为8,周长为32,则三角形的面积为() A、56 B、48 C、40D、32DAB二、练习(三)、解答题1、如图,铁路上A,B两点相距25km,C,D为 两村庄,DAAB于A,CBAB于B,已知 D

20、A=15km,CB=10km,现在要在铁路AB上 建一个土特产品收购站E,使得C,D两村到 E站的距离相等,则E站应建在离A站多少km 处?CAEBD解:设AE= x km,则 BE=(25-x)km根据勾股定理,得 AD2+AE2=DE2 BC2+BE2=CE2 又 DE=CE AD2+AE2= BC2+BE2即:152+x2=102+(25-x)2 x=10 答:E站应建在离A站10km处。x25-xCAEBD1510二、练习2、已知,ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,试说明ABC是等腰三角形。提示: 先运用勾股定理证明中线ADBC,再利用等腰三角形的

21、判定方法就可以说明了.二、练习3、已知,如图,在RtABC中,C=90, 1=2,CD=1.5, BD=2.5, 求AC的长.DACB12提示:作辅助线DEAB,利用平分线的性质和勾股定理。解:过D点做DEABDACB12E 1=2, C=90 DE=CD=1.5在 RtDEB中,根据勾股定理,得BE2=BD2-DE2=2.52-1.52=4 BE=2在RtACD和 RtAED中,CD=DE , AD=AD RtACD RtAED AC=AE令AC=x,则AB=x+2在 RtABC中,根据勾股定理,得 AC2+BC2=AB2即:x2+42=(x+2)2 x=3x1.如图所示,这是一块大家常用的

22、一种橡皮,如果AD4厘米,CD3厘米,BC12厘米,你能算出AB两点之间的距离吗?随堂练习ABCD2、等腰三角形底边上的高为8,周长为32,求这个三角形的面积8X16-XDABC解:设这个三角形为ABC,高为AD,设BD为X,则AB为(16-X), 由勾股定理得:X2+82=(16-X)2即X2+64=256-32X+X2 X=6 SABC=BCAD/2=2 6 8/2=48四边形复习四边形一、四边形的分类及转化二、几种特殊四边形的性质三、几种特殊四边形的常用判定方法四、中心对称图形与中心对称的区别和联系五、有关定理七、典型举例六、主要画图任意四边形平行四边形矩形菱形正方形梯形等腰梯形直角梯形

23、两组对边平行一个角是直角邻边相等邻边相等一个角是直角一个角是直角两腰相等一组对边平行另一组对边不平行一、四边形的分类及转化 项目四边形对边角对角线对称性平行四边形矩形菱形正方形等腰梯形平行且相等平行且相等平行且四边相等平行且四边相等两底平行两腰相等对角相等邻角互补四个角都是直角同一底上的角相等对角相等邻角互补四个角都是直角互相平分互相平分且相等互相垂直平分,且每一条对角线平分一组对角相等互相垂直平分且相等,每一条对角线平分一组对角中心对称图形中心对称图形轴对称图形中心对称图形轴对称图形中心对称图形轴对称图形轴对称图形二、几种特殊四边形的性质: 四边形条件平行四边形矩形菱形正方形等腰梯形三、几种

24、特殊四边形的常用判定方法:1、定义:两组对边分别平行 2、两组对边分别相等3、一组对边平行且相等 4、对角线互相平分1、定义:有一外角是直角的平行四边形 2、三个角是直角的四边形3、对角线相等的平行四边形1、定义:一组邻边相等的平行四边形 2、四条边都相等的四边形3、对角线互相垂直的平行四边形1、定义:一组邻边相等且有一个角是直角的平行四边形2、有一组邻边相等的矩形 3、有一个角是直角的菱形1、两腰相等的梯形 2、在同一底上的两角相等的梯形 3、对角线相等的梯形四、中心对称图形与中心对称的区别和联系中心对称图形:中心对称:如果把一个图形绕着某一点旋转180后与原来的图形重合,那么这个图形叫做中

25、心对称图形,这个点叫做对称中心。如果把一个图形绕着某一点旋转180后与另一个图形重合,那么这两个图形关于这个点中心对称,这个点叫做对称中心。ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDCABABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABC1、中心对称的两个图形是全等图形2、中心对称的两个图形的对称点连线通过对称中心,且被对称中心平分中心对称图形的对称点连线通过对称中心,且被对称中心平分oo五、有关定理:1、四边形的内角和等

26、于 ,外角和等于 。 n边形的内角和等于 ,外角和等于 。2、梯形的中位线 于两底,且等于 。平行360(n - 2)180360两底和的一半360条件:在梯形ABCD中,EF是中位线3、两条平行线之间的距离以及性质:平行线段两条平行线夹在两条平行线间的 相等夹在 间的垂线段相等AB两条平行线中,一条直线上任意一点到另一条直线的距离,叫这两条平行线的距离。ABFEDC如:ABCDL1L2如:ABCDL1L2如:结论:EFABCD,EF= (AB+CD)124、一组平行线在一条直线上截得的线段相等, 则在其它直线上截得的线段也 。5、过三角形一边的中点,且平行于另一边的直线,必过 。6、过梯形一

27、腰的中点,且平行于底边的直线,必过 。ABCDEF条件:ADBECF,AB=BC结论:DE=EFABCDE条件:在ABC中,AD= BD , DEBC结论:AE=ECABFEDC条件:在梯形ABCD中,AE=DE ,ABEFDC结论:BF=FC相等第三边的中点另一腰的中点六、主要画图:1、画平行四边形、矩形、菱形、正方形、等腰梯形如:画一个平行四边形ABCD,使边BC=5cm,对角线AC=5cm,BD=8cm.ABCDO452.5452.5OBCAD2、用平行线等分线段CNC如图:点C就是线段AB的中点AB把线段AB二等分AB把线段AB五等分EDFH如图:点C就是线段AB的中点2、用平行线等分

28、线段CNCAB把线段AB二等分AB把线段AB五等分如图:点D、E、F、H就是线段AB的五等分点七、典型举例:例1:如图,四边形ABCD为平行四边形,延长BA至E,延长DC至F,使BE=DF,AF交BC于H,CE交AD于G.求证:E=FABHFCDEG证明:四边形ABCD是平行四边形ABCD=BE=DFAECF=四边形AFCE是平行四边形注:利用平行四边形的性质来证明线段或角相等是一种常用方法。E=F例2:如图,在四边形ABCD中,AB=2,CD=1,A=60, B= D=90 ,求四边形ABCD的面积。BADCE注:四边形的问题经常转化为三角形的问题来解,转化的方法是添加适当的辅助线,如连结对

29、角线、延长两边等。解:延长AD,BC交于点E,在RtABE中,A=60,E=30又AB=2BE=3AB=2 3在RtCDE中,同理可得 DE=3CD= 3S四边形ABCD=S RtABE - S RtCDE= ABBE - CDDE1212= 223 - 131212= 33221例3:如图,在梯形ABCD中,ABCD,中位线EF=7cm,对角线ACBD,BDC=30,求梯形的高线AHABCHDFE析:求解有关梯形类的题目,常需添加辅助线,把问题转化为三角形或四边形来求解,添加辅助线一般有下列所示的几种情况:平移一腰作两高平移一对角线过梯形一腰中点和上底一端作直线延长两腰例3:如图,在梯形AB

30、CD中,ABCD,中位线EF=7cm,对角线ACBD,BDC=30,求梯形的高线AHABCHDFEM解:过A作AMBD,交CD的延长线于M又ABCD四边形ABDM是平行四边形,DM=AB,AMC= BDC=30又中位线EF=7cm,CM=CD+DM=CD+AB=2EF=14cm又ACBD,ACAM,AHCD,ACD=60AC= CM=7cm12AH=ACsin60= 3(cm)72注:解“翻折图形”问题的关键是要认识到对折时折痕为重合两点的对称轴,会形成轴对称图形。本题通过设未知数,然后根据图形的几何元素间的关系列方程求解的方法,是数学中常用的“方程思想”。例4:已知,如图,矩形纸片长为8cm

31、,宽为6cm, 把纸对折使相对两顶点A,C重合,求折痕的长。ABCDFEOD解:设折痕为EF,连结AC,AE,CF,若A,C两点重合,它们必关于EF对称,则EF是AC的中垂线 ,故AF=FC,设AC与EF交于点O,AF=FC=xcm254解得x= AF=FC= ,FD=8 x=25474答:折痕的长为7.5cm则FD=AD AF=8 - x在RtCDF中,FC = FD + CD222 x = (8 - x)+ 6222H在RtFEH中, EF = FH + EH222EF =6 + ( - ) 22225474EF=7.5(负根舍去)作FHBC于H例4:已知,如图,矩形纸片长为8cm,宽为6

32、cm, 把纸对折使相对两顶点A,C重合,求折痕的长。ABCDFEOFOCDAOAD=FO658=FO=154FE=152解法2 数据的离散程度复习课极差:一组数据中的最大数据与最小 数据的差极差最大值最小值极差能够反映数据的变化范围.极差是最简单的一种度量数据波动情况的量,但它受极端值的影响较大.练习1.在数据:3 4 5 1.5 9中,中位数是_, 极差是_.2.一组数据1, 2, 3,x 的极差是6 ,则 x的值为_7或-347.53.我市某天的气温情况如下表:8:0012:0016:0020:00-294-6极差是 。15S2= (x1x)2 (x2x)2 (xnx)2 1n在一组数据中

33、x1,x2xn,个数据与它们的平均数分别是 , 我们用它们的平均数,即用来描述这组数据的离散程度,并把它叫做这组数据的方差。 (x1x)2, (x2x)2 , (xnx)2 . . . . 方差的公式: (1) 数据1、2、3、4、5的方差是_(2)A组:0、10、5、5、5、5、5、5、5、5 极差是_,方差是_ B组:4、6、3、7、2、8、1、9、5、5 极差是_,方 差是_210586S = (x1-x)2+(x2-x)2+ +(xn-x)2 在有些情况下,需要用方差的算术平方根,即来描述一组数据的离散程度,并把它叫做这组数据的标准差。注意:通常,一组数据的方差或标准差越小, 这组数据离散程度越小,这组数据就越稳定。(1)某样本的方差是9,则标准差是_3(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论