第5章多目标决策——层次分析法2015_第1页
第5章多目标决策——层次分析法2015_第2页
第5章多目标决策——层次分析法2015_第3页
第5章多目标决策——层次分析法2015_第4页
第5章多目标决策——层次分析法2015_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、自我介绍自我介绍 姓名:盛积良姓名:盛积良职称:教授职称:教授学历:博士研究生学历:博士研究生学位:博士学位:博士专业:管理科学与工程专业:管理科学与工程研究方向:金融工程、管理决策研究方向:金融工程、管理决策手机:手机mail:相关参考资料n运筹学,胡运权,清华大学出版社(第三版)运筹学,胡运权,清华大学出版社(第三版)n管理决策与应用熵学,邱婉华,机械工业出版社管理决策与应用熵学,邱婉华,机械工业出版社n复杂系统建模与仿真,方美琪、张树人复杂系统建模与仿真,方美琪、张树人n系统工程理论与方法,汪应洛,高等教育出版社系统工程理论与方法,汪应洛,高等教育出版社n决策理

2、论与方法,郭立夫等,高等教育出版社决策理论与方法,郭立夫等,高等教育出版社n数据包络分析及其应用,吴文江,中国统计出版数据包络分析及其应用,吴文江,中国统计出版社社n数据包络分析,魏权龄,科学出版社数据包络分析,魏权龄,科学出版社n投资学,博迪,机械工业出版社投资学,博迪,机械工业出版社nOptions, Futures, and other derivatives, 清华大学清华大学出版社出版社n公司理财,公司理财,Ross,机械工业出版社,机械工业出版社n相关杂志相关杂志n管理科学学报管理科学学报n系统工程理论与实践系统工程理论与实践n系统工程学报系统工程学报n管理工程学报管理工程学报n中

3、国管理科学中国管理科学n系统管理学报系统管理学报n情报学报情报学报nManagement science(MS)nOperation research (OR)国家自然科学基金委管理科学部国家自然科学基金委管理科学部30种重要期刊种重要期刊层次分析法层次分析法Analytic Hierarchy ProcessAHPT.L.saaty层次分析法建模层次分析法建模一一 问题的提出问题的提出 日常生活中有许多决策问题。决策是指在面临多种日常生活中有许多决策问题。决策是指在面临多种方案时需要依据一定的标准方案时需要依据一定的标准(一个或多个)(一个或多个)选择某一种方案。选择某一种方案。例例1 1

4、购物购物 买钢笔,一般要依据质量、颜色、实用性、价格、买钢笔,一般要依据质量、颜色、实用性、价格、外形等方面的因素选择某一支钢笔。外形等方面的因素选择某一支钢笔。 买饭,则要依据色、香、味、价格等方面的因素选买饭,则要依据色、香、味、价格等方面的因素选择某种饭菜。择某种饭菜。例例2 2 旅游旅游 假期旅游,是去风光秀丽的苏州,还是去迷人的北假期旅游,是去风光秀丽的苏州,还是去迷人的北戴河,或者是去山水甲天下的桂林,一般会依据景色、戴河,或者是去山水甲天下的桂林,一般会依据景色、费用、食宿条件、旅途等因素选择去哪个地方。费用、食宿条件、旅途等因素选择去哪个地方。例3 择业面临毕业,可能有高校、科

5、研单位、企业等单位可以去选择,一般依据工作环境、工资待遇、发展前途、住房条件等因素择业。例4 科研课题的选择 由于经费等因素,有时不能同时开展几个课题,一般依据课题的可行性、应用价值、理论价值、被培养人才等因素进行选题。 面临各种各样的方案,要进行比较、判断、评价、最后作出面临各种各样的方案,要进行比较、判断、评价、最后作出决策。这个过程主观因素占有相当的比重给用数学方法解决问决策。这个过程主观因素占有相当的比重给用数学方法解决问题带来不便。题带来不便。T.L.saaty等人等人20世纪在七十年代提出了一种能有世纪在七十年代提出了一种能有效处理这类问题的实用方法。效处理这类问题的实用方法。层次

6、分析法(层次分析法(Analytic Hierarchy Process, AHP)这是一种定这是一种定性和定量相结合的、系统化的、层次化的分析方法。性和定量相结合的、系统化的、层次化的分析方法。过去研究自然和社会现象主要有机理分析法和统计分析法两过去研究自然和社会现象主要有机理分析法和统计分析法两种方法,前者用经典的数学工具分析现象的因果关系,后者以种方法,前者用经典的数学工具分析现象的因果关系,后者以随机数学为工具,通过大量的观察数据寻求统计规律。近年发随机数学为工具,通过大量的观察数据寻求统计规律。近年发展的系统分析是又一种方法,而层次分析法是系统分析的数学展的系统分析是又一种方法,而层

7、次分析法是系统分析的数学工具之一。工具之一。层次分析法的基本思路:层次分析法的基本思路:与人们对某一复杂决策问题的思维、判断过程大体一致。选择钢笔质量、颜色、价格、外形、实用钢笔1、钢笔2、钢笔3、钢笔4质量、颜色、价格、外形、实用进行排序将各个钢笔的质量、颜色、价格、外形、实用进行排序经综合分析决定买哪支钢笔二二 层次分析法的基本步骤层次分析法的基本步骤买钢笔质量颜色价格外形实用可供选择的笔1 1 建立层次结构模型建立层次结构模型 一般分为三层,最上面为目标层目标层,最下面为方案层方案层,中间是准则层或指标层准则层或指标层。例1 的层次结构模型 准则层 方案层目标层选择旅游地景色费用居住饮食

8、旅途苏州、杭州、桂林例2 层次结构模型层次结构模型 准则层A 方案层B目标层Z若上层的每个因素都支配着下一层的所有因素,或被下一层所有因素影响,称为完全层次结构,否则称为不完全层次结构。目标层目标层合理选择科研课题A成果贡献B1人才培养B2课题可行性B3课题D1课题D2课题D3应用价值 c1科学意义 c2难易程度 c3研究周期 c4财政支持 c5方案层方案层准则层准则层1例3 层次结构模型层次结构模型准则层准则层2 构建了层次结构模型,决策就转化为待评方案关于具有层次构建了层次结构模型,决策就转化为待评方案关于具有层次结构的目标准则体系的排序问题,结构的目标准则体系的排序问题,AHP方法采用优

9、先权重作方法采用优先权重作为区分方案优劣程度的指标。为区分方案优劣程度的指标。 优先权重是一种相对度量数,表示方案相对优劣的程度,其优先权重是一种相对度量数,表示方案相对优劣的程度,其数值介于数值介于0和和1之间。之间。 在给定的决策准则之下,数值越大,方案越优,反之越劣。在给定的决策准则之下,数值越大,方案越优,反之越劣。 方案层各方案关于目标准则体系整体的优先权重,是通过递方案层各方案关于目标准则体系整体的优先权重,是通过递阶层次从上到下逐层计算得到的。这个过程称为递阶层次权阶层次从上到下逐层计算得到的。这个过程称为递阶层次权重解释过程。重解释过程。 递阶层次权重解释的基础,是测算每一层各

10、元素关于上一层递阶层次权重解释的基础,是测算每一层各元素关于上一层次某元素的优先权重。次某元素的优先权重。 这种测算是通过构造判断矩阵来实现的,也就是以相邻上一这种测算是通过构造判断矩阵来实现的,也就是以相邻上一层某元素为准则,该层次元素两两比较判断,按照特定的比层某元素为准则,该层次元素两两比较判断,按照特定的比例标度将判断结果数量化,形成判断矩阵。例标度将判断结果数量化,形成判断矩阵。 然后,计算判断矩阵的最大特征值和相应的特征向量,以特然后,计算判断矩阵的最大特征值和相应的特征向量,以特征向量各分量表示该层次元素相对相邻上一层某元素的优先征向量各分量表示该层次元素相对相邻上一层某元素的优

11、先权重,整个计算沿着递阶层次结构,从上到下逐层进行。权重,整个计算沿着递阶层次结构,从上到下逐层进行。 最后,计算出方案层各方案关于整个目标准则体系的优先权最后,计算出方案层各方案关于整个目标准则体系的优先权重。层次分析法因此而得名。重。层次分析法因此而得名。设某层有个因素,n nxxxX,21 jiijaa1 nnnnnnnnijaaaaaaaaaaA212222111211An2 2 构造成对比较矩阵构造成对比较矩阵要比较它们对上一层某一准则(或目标)的影响程度,确定在该层中相对于某一准则所占的比重。(即把个因素对上层某一目标的影响程度排序)ijaij用 表示第个因素相对于第 个因素的比较

12、结果,则则称为成对比较矩阵成对比较矩阵。上述比较是两两因素之间进行的比较,比较时取1-91-9尺度。尺度。尺度第 个因素与第 个因素的影响相同ij第 个因素比第 个因素的影响稍强 第 个因素比第 个因素的影响强 第 个因素比第 个因素的影响明强第 个因素比第 个因素的影响绝对地强 iiiijjjj含义比较尺度:(1-91-9尺度尺度的含义)2,4,6,8表示第个因素相对于第个因素的影响介于上述两个相邻等级之间。不难定义以上各尺度倒数的含义,根据。jijiijaa1由上述定义知,成对比较矩阵 nnijaA 0 . 1ijajiijaa1 .2则称为正互反阵正互反阵。比如,例2的旅游问题中,第二层

13、A A的各因素对目标层Z Z的影响两两比较结果如下:满足以下性质ZA1A2A3A4A5A1A2A3A4A511/2433217551/41/711/21/31/31/52111/31/53111 . 3iia54321,AAAAA分别表示景色、费用、居住、饮食、旅途。由上表,可得成对比较矩阵1135131112513131211714155712334211A旅游问题的成对比较矩阵共有6个(一个5阶,5个3阶)。问题:问题:两两进行比较后,怎样才能知道,下层各因素对上层某因素的影响程度的排序结果呢?3 层次单排序及一致性检验层次单排序及一致性检验nnwww,21层次单排序:层次单排序:确定下层

14、各因素对上层某因素影响程度的过程。确定下层各因素对上层某因素影响程度的过程。用权值表示影响程度,先从一个简单的例子看如何确定权值。例如 一块石头重量记为1,打碎分成 各小块,各块的重量分别记为:则可得成对比较矩阵 11121212121wwwwwwwwwwwwAnnnn由右面矩阵可以看出,jkkijiwwwwww 即,nji, 2 , 1,1321231321234, 2, 7aaaaaa Aijkjikaaa ijkjikaaa Anjiaaaiijiij,2, 1, 1,1 .1也是一致阵TA . 2 1 . 3ArankA的各行成比例,则但在例2的成对比较矩阵中,在正互反矩阵 中,若 ,

15、则称 为一致阵。一致阵的性质:。特征根均等于个其余的最大特征根(值)为0 1, . 4n-n AA5. 的任一列(行)都是对应于特征根 的特征向量。n若成对比较矩阵是一致阵,则我们自然会取对应于最大特征根 的归一化特征向量 且nnwww,2111 niiw权权值值. .上上层层某某因因素素影影响响程程度度的的表表示示下下层层第第i i个个因因素素对对w wi i为一致阵。为一致阵。时,时,当且仅当,当且仅当的最大特征值的最大特征值阶互反矩阵阶互反矩阵定理:定理:AnnAn若成对比较矩阵不是一致阵,SaatySaaty等人建议用其最大特征根对应的归一化特征向量作为权向量W ,则wwAnwww,2

16、1w这样确定权向量的方法称为特征根法特征根法. .1nnCI由于 连续的依赖于 ,则 比 大的越多, 的不一致性越严重。用最大特征值对应的特征向量作为被比较因素对上层某因素影响程度的权向量,其不一致程度越大,引起的判断误差越大。因而可以用 数值的大小来衡量 nijanAA的不一致程度。定义一致性指标一致性指标其中 为 的对角线元素之和,也为 的特征根之和。AnARI50021,AAA50021,CICICI15005005002150021nnCICICIRI则可得一致性指标 定义随机一致性指标随机一致性指标随机构造500个成对比较矩阵随机一致性指标 RI 的数值:n1234567891011

17、RI000.580.9021.411.451.491.511 .0RICICRAA一致性检验一致性检验:利用一致性指标和一致性比率0.1及随机一致性指标的数值表,对 进行检验的过程。 一般,当一致性比率 的不一致程度在容许范围之内,可用其归一化特征向量作为权向量,否则要重新构造成对比较矩阵,对 加以调整。时,认为A4 4 层次总排序及其一致性检验层次总排序及其一致性检验 确定某层所有因素对于总目标相对重要性的排序权值过程,确定某层所有因素对于总目标相对重要性的排序权值过程,称为层次总排序层次总排序从最高层到最低层逐层进行。设: Z1A2AmA1B2BnB,21mAAAmA

18、个因素层对总目标Z的排序为maaa,21jAAnB中因素为个因素对上层层的层次单排序为), 2 , 1( ,21mjbbbnjjj即 层第 个因素对总目标的权值为:BnmmnnnmmmmbababaBbababaBbababaB22112222211211221111:Bimjijjba1层的层次总排序为:B层的层次总排序mAAA,21maaa,21nBBB2112111nbbb22212nbbbnmmmbbb21AB111bbamjjj212bbamjjjnmjnjjbba1层次总排序的一致性检验层次总排序的一致性检验设 层 对上层( 层)中因素 的层次单排序一致性指标为 ,随机一致性指为

19、,则层次总排序的一致性比率为:BnBBB,21A), 2 , 1(mjAjjCIjRImmmmRIaRIaRIaCIaCIaCIaCR221122111 . 0CR当 时,认为层次总排序通过一致性检验。到此,根据最下层(决策层)的层次总排序做出最后决策。1.1.建立层次结构模型建立层次结构模型 该结构图包括目标层,准则层,方案层。层次分析法的基本步骤基本步骤归纳如下3.计算单排序权向量并做一致性检验计算单排序权向量并做一致性检验2.构造成对比较矩阵构造成对比较矩阵从第二层开始用成对比较矩阵和19尺度。对每个成对比较矩阵计算最大特征值及其对应的特征向量,利用一致性指标、随机一致性指标和一致性比率

20、做一致性检验。若检验通过,特征向量(归一化后)即为权向量;若不通过,需要重新构造成对比较矩阵。计算最下层对最上层总排序的权向量。4.4.计算总排序权向量并做一致性检验计算总排序权向量并做一致性检验1 . 0CRCR进行检验。若通过,则可按照总排序权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率 较大的成对比较矩阵。mmmmRIaRIaRIaCIaCIaCIaCR22112211利用总排序一致性比率三三 层次分析法建模举例层次分析法建模举例Z1A2A3A4A5A1B2B3B54321,AAAAA321,BBB1 1 旅游问题旅游问题(1)建模分别分别表示景色、费用、居住、饮

21、食、旅途。分别表示苏杭、北戴河、桂林。 (2)构造成对比较矩阵1135131112513131211714155712334211A1215121215211B1383113813112B131313113113B114111314314B144411141115B(3)计算层次单排序的权向量和一致性检验A073. 5110. 0 ,099. 0 ,055. 0 ,475. 0 ,263. 0018. 0155073. 5CI12. 1RI1 . 0016. 012. 1018. 0CRA成对比较矩阵 的最大特征值表明 通过了一致性验证。故则该特征值对应的归一化特征向量 对成对比较矩阵 可以求

22、层次总排序的权向量并进行一致性检验,结果如下: 54321,BBBBBk1k2k3kkkCIkRI12345595. 0082. 0429. 0633. 0166. 0277. 0236. 0429. 0193.0166. 0129. 0682. 0142. 0175. 0668. 0005. 3002. 33009. 33003. 0001. 000005. 058. 058. 058. 058. 058. 0计算 可知 通过一致性检验。kCR54321,BBBBB对总目标的权值为:1B3 . 0110. 0166. 0099. 0633. 0055. 0429. 0475. 0082. 0

23、263. 0595. 032,BB,456. 0 ,246. 0456. 0 ,246. 0 , 3 . 01 . 0015. 058. 0/)0110. 0005. 0099. 00055. 0001. 0475. 0003. 0263. 0(CR(4)计算层次总排序权值和一致性检验又决策层对总目标的权向量为:同理得,同理得, 对总目标的权值分别为:对总目标的权值分别为:故,层次总排序通过一致性检验。可作为最后的决策依据。456. 0 ,246. 0 , 3 . 0213BBB321,BBB故最后的决策应该去桂林桂林。又 分别表示苏杭、北戴河、桂林,即各方案的权重排序为四四 层次分析法的优点

24、和局限性层次分析法的优点和局限性1 系统性 层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策 ,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。 2 实用性 层次分析法把定性和定量方法结合起来,能处理许多用传统的最优化技术无法着手的实际问题,应用范围很广,同时,这种方法使得决策者与决策分析者能够相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性。3 简洁性 具有中等文化程度的人即可以了解层次分析法的基本原理并掌握该法的基本步骤,计算也非常简便,并且所得结果简单明确,容易被决策者了解和掌握。以上三点体现了层次分析法的优点,该法的局限性主要表现在以下几个方面:第一第一 只能从原有的方案中优选一个出来,没有办法得出更好的新方案。第二第二 该法中的比较、判断以及结果的计算过程都是粗糙 的,不适用于精度较高的问题。第三第三 从建立层次结构模型到给出成对比较矩阵,人主观 因素对整个过程的影响很大,这就使得结果难以让 所有的决策者接受。当然采取专

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论