版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在一些美术字中,有的汉字是轴对称图形下面4个汉字中,可以看作是轴对称图形的是()ABCD2在实数3.5、2、0、4中,最小的数是()A3.5B2C0D43二次函数的图像如图所示,下列结论正确是( )ABCD有两个不
2、相等的实数根4如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点H,连接DH,下列结论正确的是()ABGFDG HD平分EHG AGBE SHDG:SHBG=tanDAG 线段DH的最小值是22ABCD5已知点A(1,y1)、B(2,y2)、C(3,y3)都在反比例函数y的图象上,则y1、y2、y3的大小关系是( )Ay1y2y3By3y2y1Cy2y1y3Dy3y1y26若点都是反比例函数的图象上的点,并且,则下列各式中正确的是( )ABCD7数轴上有A,B,C,D四个点,其中绝对值大于2的点是()A点AB点BC点CD点D8下
3、列各数中是无理数的是( )Acos60BC半径为1cm的圆周长D9如图,AB是O的一条弦,点C是O上一动点,且ACB=30,点E,F分别是AC,BC的中点,直线EF与O交于G,H两点,若O的半径为6,则GE+FH的最大值为()A6B9C10D1210下列说法正确的是( )A一个游戏的中奖概率是110则做10次这样的游戏一定会中奖B为了解全国中学生的心理健康情况,应该采用普查的方式C一组数据 8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是 8D若甲组数据的方差 S= 0.01 ,乙组数据的方差 s 0 .1 ,则乙组数据比甲组数据稳定二、填空题(共7小题,每小题3分,满
4、分21分)11在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax1相交于A,B两点(点B在第一象限),点C在AB的延长线上(1)已知a=1,点B的纵坐标为1如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,AC的长为_(1)如图1,若BC=AB,过O,B,C三点的抛物线L3,顶点为P,开口向下,对应函数的二次项系数为a3, =_12如图,点A,B,C在O上,四边形OABC是平行四边形,ODAB于点E,交O于点D,则BAD=_13股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停若
5、一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是_14化简: =_15如果方程x2-4x+3=0的两个根分别是RtABC的两条边,ABC最小的角为A,那么tanA的值为16如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,1);P5(2,1);P6(2,0),则点P2019的坐标是_17因式分解:3x2-6xy+3y2=_三、解答题(共7小题,满分69分)18(10分)如图,的直角顶点P在第四象限,顶点A、B分别落在反比例函数图象的两支上,且轴于点
6、C,轴于点D,AB分别与x轴,y轴相交于点F和已知点B的坐标为填空:_;证明:;当四边形ABCD的面积和的面积相等时,求点P的坐标19(5分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,O是PAD的外接圆 (1)求证:AB是O的切线; (2)若AC=8,tanBAC=,求O的半径20(8分)阅读下列材料,解答下列问题:材料1把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫分解因式如果把整式的乘法看成一个变形过程,那么多项式的因式分解就是它的逆过程公式法(平方差公式、完全平方公式)是因式分解的一种基本方法如对于二次三项式a2+2ab+b2,可以逆用乘法公式将它分解成(
7、a+b)2的形式,我们称a2+2ab+b2为完全平方式但是对于一般的二次三项式,就不能直接应用完全平方了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:x2+2ax3a2x2+2ax+a2a23a2(x+a)2(2a)2(x+3a)(xa)材料2因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成一个整体,令x+yA,则原式A2+2A+1(A+1)2再将“A”还原,得:原式(x+y+1)2上述解题用到的是“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把c26c+8分解因式;(2)结合材料1和材料
8、2完成下面小题:分解因式:(ab)2+2(ab)+1;分解因式:(m+n)(m+n4)+321(10分)如图,在ABC中,C=90作BAC的平分线AD,交BC于D;若AB=10cm,CD=4cm,求ABD的面积22(10分)某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售利润为Y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于1
9、6200元,请分析合理的方案共有多少种?(3)实际进货时,厂家对电冰箱出厂价下调K(0K150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案23(12分)已知抛物线y=a(x-1)2+3(a0)与y轴交于点A(0,2),顶点为B,且对称轴l1与x轴交于点M(1)求a的值,并写出点B的坐标;(2)将此抛物线向右平移所得新的抛物线与原抛物线交于点C,且新抛物线的对称轴l2与x轴交于点N,过点C做DEx轴,分别交l1、l2于点D、E,若四边形MDEN是正方形,求平移后抛物线的解析式.24(14分)在一次数学活动课上,老师让同学们到
10、操场上测量旗杆的高度,然后回来交流各自的测量方法小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高你认为这种测量方法是否可行?请说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】根据轴对称图形的概念判断即可【详解】A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形故选:A【点睛】本题考查的是轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合2、D
11、【解析】根据任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可【详解】在实数3.5、2、0、4中,最小的数是4,故选D【点睛】掌握实数比较大小的法则3、C【解析】【分析】观察图象:开口向下得到a0;对称轴在y轴的右侧得到a、b异号,则b0;抛物线与y轴的交点在x轴的上方得到c0,所以abc0;由对称轴为x=1,可得2a+b=0;当x=-1时图象在x轴下方得到y=a-b+c0,结合b=-2a可得 3a+c0;观察图象可知抛物线的顶点为(1,3),可得方程有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到
12、a0;对称轴在y轴的右侧得到a、b异号,则b0;抛物线与y轴的交点在x轴的上方得到c0,所以abc0,故A选项错误;对称轴x=1,b=-2a,即2a+b=0,故B选项错误;当x=-1时, y=a-b+c0,又b=-2a, 3a+c0,故C选项正确;抛物线的顶点为(1,3),的解为x1=x2=1,即方程有两个相等的实数根,故D选项错误,故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0)的图象,当a0,开口向上,函数有最小值,a0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c0,抛物线与y轴
13、的交点在x轴的上方;当=b2-4ac0,抛物线与x轴有两个交点 4、B【解析】首先证明ABEDCF,ADGCDG(SAS),AGBCGB,利用全等三角形的性质,等高模型、三边关系一一判断即可【详解】解:四边形ABCD是正方形,AB=CD,BAD=ADC=90,ADB=CDB=45.在ABE和DCF中,AB=CD,BAD=ADC,AE=DF,ABEDCF,ABE=DCF.在ADG和CDG中,AD=CD,ADB=CDB,DG=DG,ADGCDG,DAG=DCF,ABE=DAG.DAG+BAH=90,BAE+BAH=90,AHB=90,AGBE,故正确,同理可证:AGBCGB.DFCB,CBGFDG
14、,ABGFDG,故正确.SHDG:SHBG=DG:BG=DF:BC=DF:CD=tanFCD,DAG=FCD,SHDG:SHBG=tanFCD=tanDAG,故正确.取AB的中点O,连接OD、OH.正方形的边长为4,AO=OH=4=1,由勾股定理得,OD=,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小=1-1无法证明DH平分EHG,故错误,故正确.故选B.【点睛】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握它们的性质进行解题.5、B【解析】分别把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可【
15、详解】点A(1,y1),B(2,y2),C(3,y3)都在反比例函数y=的图象上,y1=6,y2=3,y3=-2,236,y3y2y1,故选B【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键.6、B【解析】解:根据题意可得:反比例函数处于二、四象限,则在每个象限内为增函数,且当x0时y0,当x0时,y0,.7、A【解析】根据绝对值的含义和求法,判断出绝对值等于2的数是2和2,据此判断出绝对值等于2的点是哪个点即可【详解】解:绝对值等于2的数是2和2,绝对值等于2的点是点A故选A【点睛】此题主要考查了绝对值的含
16、义和求法,要熟练掌握,解答此题的关键要明确:互为相反数的两个数绝对值相等;绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数有理数的绝对值都是非负数8、C【解析】分析:根据“无理数”的定义进行判断即可.详解:A选项中,因为,所以A选项中的数是有理数,不能选A;B选项中,因为是无限循环小数,属于有理数,所以不能选B;C选项中,因为半径为1cm的圆的周长是cm,是个无理数,所以可以选C;D选项中,因为,2是有理数,所以不能选D.故选.C.点睛:正确理解无理数的定义:“无限不循环小数叫做无理数”是解答本题的关键.9、B【解析】首先连接OA、OB,根据圆周角定理,求出AOB=
17、2ACB=60,进而判断出AOB为等边三角形;然后根据O的半径为6,可得AB=OA=OB=6,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可【详解】解:如图,连接OA、OB,ACB=30,AOB=2ACB=60,OA=OB,AOB为等边三角形,O的半径为6,AB=OA=OB=6,点E,F分别是AC、BC的中点,EF=AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,当弦GH是圆的直径时,它的最大值为:62=12,GE+FH的最大值为:123=1故选:B【点睛】本题结合动点考查了圆周角定理,三角形
18、中位线定理,有一定难度确定GH的位置是解题的关键.10、C【解析】众数,中位数,方差等概念分析即可.【详解】A、中奖是偶然现象,买再多也不一定中奖,故是错误的;B、全国中学生人口多,只需抽样调查就行了,故是错误的;C、这组数据的众数和中位数都是8,故是正确的;D、方差越小越稳定,甲组数据更稳定,故是错误.故选C.【点睛】考核知识点:众数,中位数,方差.二、填空题(共7小题,每小题3分,满分21分)11、4 【解析】解:(1)当a=1时,抛物线L的解析式为:y=x1,当y=1时,1=x1,x=,B在第一象限,A(,1),B(,1),AB=1,向右平移抛物线L使该抛物线过点B,AB=BC=1,AC
19、=4;(1)如图1,设抛物线L3与x轴的交点为G,其对称轴与x轴交于Q,过B作BKx轴于K,设OK=t,则AB=BC=1t,B(t,at1),根据抛物线的对称性得:OQ=1t,OG=1OQ=4t,O(0,0),G(4t,0),设抛物线L3的解析式为:y=a3(x0)(x4t),y=a3x(x4t),该抛物线过点B(t,at1),at1=a3t(t4t),t0,a=3a3,=,故答案为(1)4;(1)点睛:本题考查二次函数的图象和性质.熟练掌握二次函数的性质是解题的关键.12、15【解析】根据圆的基本性质得出四边形OABC为菱形,AOB=60,然后根据同弧所对的圆心角与圆周角之间的关系得出答案【
20、详解】解:OABC为平行四边形,OA=OC=OB, 四边形OABC为菱形,AOB=60,ODAB, BOD=30, BAD=302=15故答案为:15.【点睛】本题主要考查的是圆的基本性质问题,属于基础题型根据题意得出四边形OABC为菱形是解题的关键13、.【解析】股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能10%,设这两天此股票股价的平均增长率为x,每天相对于前一天就上涨到1+x,由此列出方程解答即可【详解】设这两天此股票股价的平均增长率为x,由题意得(110%)(1+x)21故答案为:(110%)(1+x)21【点睛】本题主要考查了由实际问题抽象出一元二
21、次方程,关键是掌握平均变化率的方法,若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为14、【解析】先利用除法法则变形,约分后通分并利用同分母分式的减法法则计算即可【详解】原式,故答案为【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键15、或【解析】解方程x2-4x+3=0得,x1=1,x2=3,当3是直角边时,ABC最小的角为A,tanA=;当3是斜边时,根据勾股定理,A的邻边=,tanA=;所以tanA的值为或16、(673,0)【解析】由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,据此可解【详解】解:由P3、P6、P9 可
22、得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,20193673,P2019 (673,0) 则点P2019的坐标是 (673,0) 故答案为 (673,0)【点睛】本题属于平面直角坐标系中找点的规律问题,找到某种循环规律之后,可以得解本题难度中等偏上.17、3(xy)1【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x16xy+3y1=3(x11xy+y1)=3(xy)1考点:提公因式法与公式法的综合运用三、解答题(共7小题,满分69分)18、(1)1;(2)证明见解析;(1)点坐标为【解析】由点B的坐标,利用反比例函数图象上点的坐标特征可求出k值;设A点坐标为,则D点坐
23、标为,P点坐标为,C点坐标为,进而可得出PB,PC,PA,PD的长度,由四条线段的长度可得出,结合可得出,由相似三角形的性质可得出,再利用“同位角相等,两直线平行”可证出;由四边形ABCD的面积和的面积相等可得出,利用三角形的面积公式可得出关于a的方程,解之取其负值,再将其代入P点的坐标中即可求出结论【详解】解:点在反比例函数的图象,故答案为:1证明:反比例函数解析式为,设A点坐标为轴于点C,轴于点D,点坐标为,P点坐标为,C点坐标为,又,解:四边形ABCD的面积和的面积相等,整理得:,解得:,舍去,点坐标为【点睛】本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以
24、及三角形的面积,解题关键是:根据点的坐标,利用反比例函数图象上点的坐标特征求出k值;利用相似三角形的判定定理找出;由三角形的面积公式,找出关于a的方程19、 (1)见解析;(2)【解析】分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OPAD,AE=DE,则1+OPA=90,而OAP=OPA,所以1+OAP=90,再根据菱形的性质得1=2,所以2+OAP=90,然后根据切线的判定定理得到直线AB与O相切; (2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tanDAC=,得到DF=2,根据勾股定理得到AD=2,求得A
25、E=,设O的半径为R,则OE=R,OA=R,根据勾股定理列方程即可得到结论详解:(1)连结OP、OA,OP交AD于E,如图, PA=PD,弧AP=弧DP,OPAD,AE=DE,1+OPA=90 OP=OA,OAP=OPA,1+OAP=90 四边形ABCD为菱形,1=2,2+OAP=90,OAAB,直线AB与O相切; (2)连结BD,交AC于点F,如图, 四边形ABCD为菱形,DB与AC互相垂直平分 AC=8,tanBAC=,AF=4,tanDAC=,DF=2,AD=2,AE=在RtPAE中,tan1=,PE=设O的半径为R,则OE=R,OA=R在RtOAE中,OA2=OE2+AE2,R2=(R
26、)2+()2,R=,即O的半径为 点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线也考查了菱形的性质和锐角三角函数以及勾股定理20、(1)(c-4)(c-2);(2)(a-b+1)2;(m+n-1)(m+n-3).【解析】(1)根据材料1,可以对c2-6c+8分解因式;(2)根据材料2的整体思想可以对(a-b)2+2(a-b)+1分解因式;根据材料1和材料2可以对(m+n)(m+n-4)+3分解因式【详解】(1)c2-6c+8 =c2-6c+32-32+8 =(c-3)2-1 =(c-3+1)(c-3+1)=(c-4)(c-2);(2)(a-b)2+2(a-b)+
27、1 设a-b=t,则原式=t2+2t+1=(t+1)2,则(a-b)2+2(a-b)+1=(a-b+1)2;(m+n)(m+n-4)+3 设m+n=t,则t(t-4)+3 =t2-4t+3 =t2-4t+22-22+3 =(t-2)2-1 =(t-2+1)(t-2-1)=(t-1)(t-3),则(m+n)(m+n-4)+3=(m+n-1)(m+n-3)【点睛】本题考查因式分解的应用,解题的关键是明确题意,可以根据材料中的例子对所求的式子进行因式分解21、(1)答案见解析;(2)【解析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作于DEABE,根据角平分线的性质得到DE=CD=4,
28、由三角形的面积公式即可得到结论.【详解】解:(1)如图所示,AD即为所求;(2)如图,过D作DEAB于E,AD平分BAC,DE=CD=4,SABD=ABDE=20cm2.【点睛】掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键.22、(1)每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)共有5种方案;(3)当100k150时,购进电冰箱38台,空调62台,总利润最大;当0k100时,购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元【解析】(1)用“用9000元购进电冰箱的数量与用7200元购进空调数量相等”建立方程即可
29、;(2)建立不等式组求出x的范围,代入即可得出结论;(3)建立y1=(k100)x+20000,分三种情况讨论即可【详解】(1)设每台空调的进价为m元,则每台电冰箱的进价(m+300)元,由题意得, m=1200,经检验,m=1200是原分式方程的解,也符合题意,m+300=1500元,答:每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)由题意,y=(16001500)x+(14001200)(100 x)=100 x+20000,33x38,x为正整数,x=34,35,36,37,38,即:共有5种方案;(3)设厂家对电冰箱出厂价下调k(0k150)元后,这100台家电的销售总利润为y1元,y1=(16001500+k)x+(140
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 赣南医学院《广告造型基础》2023-2024学年第一学期期末试卷
- 赣南师范大学科技学院《舞蹈艺术概论》2023-2024学年第一学期期末试卷
- 三年级数学上册七年月日一天的时间说课稿北师大版
- 三年级数学上册四两三位数除以一位数第3课时除法的验算教案苏教版
- 小学生安全备课课件
- 2021中级电气工程师完整复习试题及答案
- 小学生课堂发言制度管理
- 三年级健康教学参考计划范文5篇
- 肝癌微波消融术
- 《愚人节中英文》课件
- 血液透析室护士长年终总结报告
- 露天矿山边坡稳定性分析与防治措施
- 培养学生深度思考的能力
- 中医医院运营方案
- 【瑞幸咖啡财务分析报告(附财务报表)5300字(论文)】
- 过敏性鼻炎-疾病研究白皮书
- 乌头碱中毒急诊科培训课件-
- 三轴水泥搅拌桩施工质量措施
- 贵州茅台2023审计报告
- 幼儿园学前教育五以内的数字比大小练习题
- 高速铁路沉降观测与评估
评论
0/150
提交评论