江西省吉安朝宗实验学校2022年中考冲刺卷数学试题含解析_第1页
江西省吉安朝宗实验学校2022年中考冲刺卷数学试题含解析_第2页
江西省吉安朝宗实验学校2022年中考冲刺卷数学试题含解析_第3页
江西省吉安朝宗实验学校2022年中考冲刺卷数学试题含解析_第4页
江西省吉安朝宗实验学校2022年中考冲刺卷数学试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下面几何的主视图是( )ABCD2如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()ABCD3把抛物线y2x2向上平移1个单位,得到的抛物线

2、是()Ay2x2+1By2x21Cy2(x+1)2Dy2(x1)24计算8+3的结果是()A11B5C5D115的倒数是( )AB3CD6对于数据:6,3,4,7,6,0,1下列判断中正确的是( )A这组数据的平均数是6,中位数是6B这组数据的平均数是6,中位数是7C这组数据的平均数是5,中位数是6D这组数据的平均数是5,中位数是77一元二次方程的根的情况是A有两个不相等的实数根B有两个相等的实数根C没有实数根D无法判断8方程x2kx+1=0有两个相等的实数根,则k的值是()A2B2C2D09如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D处若AB=3,

3、AD=4,则ED的长为AB3C1D10如图,ABC中,B=55,C=30,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则BAD的度数为( )A65B60C55D45二、填空题(共7小题,每小题3分,满分21分)11一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为_.1216的算术平方根是 13如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上()AC的长等于_;()在线段AC上有一点D,满足AB2=ADAC,请在如图所示的网格中,用无刻度的直尺,画

4、出点D,并简要说明点D的位置是如何找到的(不要求证明)_14化简: _.15函数中,自变量的取值范围是_16如图,将ABC绕点A逆时针旋转100,得到ADE.若点D在线段BC的延长线上,则的大小为_.17一个多项式与的积为,那么这个多项式为 .三、解答题(共7小题,满分69分)18(10分)如图所示,ACB和ECD都是等腰直角三角形,ACBECD90,D为AB边上一点求证:ACEBCD;若AD5,BD12,求DE的长19(5分)给定关于x的二次函数ykx24kx+3(k0),当该二次函数与x轴只有一个公共点时,求k的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB2,求k

5、的值;由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:与y轴的交点不变;对称轴不变;一定经过两个定点;请判断以上结论是否正确,并说明理由20(8分)已知,抛物线yx2x+与x轴分别交于A、B两点(A点在B点的左侧),交y轴于点F(1)A点坐标为 ;B点坐标为 ;F点坐标为 ;(2)如图1,C为第一象限抛物线上一点,连接AC,BF交于点M,若BMFM,在直线AC下方的抛物线上是否存在点P,使SACP4,若存在,请求出点P的坐标,若不存在,请说明理由;(3)如图2,D、E是对称轴右侧第一象限抛物线上的两点,直线AD、AE分别交y轴于M、N两点

6、,若OMON,求证:直线DE必经过一定点21(10分)某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查.在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如下图所示:本次调查人数共 人,使用过共享单车的有 人;请将条形统计图补充完整;如果这个小区大约有3000名居民,请估算出每天的骑行路程在24千米的有多少人?22(10分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗

7、匀再随机抽出一张请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?23(12分)如图,边长为1的正方形ABCD的对角线AC、BD相交于点O有直角MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转MPN,旋转角为(090),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G(1)求四边形OEBF的面积;(2)求证:OGBD=EF2;(3)在旋转过程中,当BEF与COF的面积之和最大时,求AE的长24(1

8、4分)如图,已知点A(1,a)是反比例函数y1=的图象上一点,直线y2=与反比例函数y1=的图象的交点为点B、D,且B(3,1),求:()求反比例函数的解析式;()求点D坐标,并直接写出y1y2时x的取值范围;()动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】主视图是从物体正面看所得到的图形【详解】解:从几何体正面看故选B【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图2、B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形故选B考点

9、:简单组合体的三视图3、A【解析】根据“上加下减”的原则进行解答即可【详解】解:由“上加下减”的原则可知,把抛物线y2x2向上平移1个单位,得到的抛物线是:y2x2+1故选A【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键4、B【解析】绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值互为相反数的两个数相加得1依此即可求解【详解】解:832故选B【点睛】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有1从而确定用那一条法则在应用过程中,要牢记“先符号,后绝对值”5、A【解析】解:的倒数是故

10、选A【点睛】本题考查倒数,掌握概念正确计算是解题关键6、C【解析】根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的平均数和中位数【详解】对于数据:6,3,4,7,6,0,1,这组数据按照从小到大排列是:0,3,4,6,6,7,1,这组数据的平均数是: 中位数是6,故选C.【点睛】本题考查了平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列, 正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.7、A【解析】把a=1,b=-1,c=-1,代

11、入,然后计算,最后根据计算结果判断方程根的情况.【详解】 方程有两个不相等的实数根.故选A.【点睛】本题考查根的判别式,把a=1,b=-1,c=-1,代入计算是解题的突破口.8、C【解析】根据已知得出=(k)2411=0,解关于k的方程即可得【详解】方程x2kx+1=0有两个相等的实数根,=(k)2411=0,解得:k=2,故选C【点睛】本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a0),当b24ac0时,方程有两个不相等的实数根;当b24ac=0时,方程有两个相等的实数根;当b24ac0时,方程无实数根9、A【解析】首先利用勾股定理计算出AC的长,再

12、根据折叠可得DECDEC,设ED=x,则DE=x,AD=ACCD=2,AE=4x,再根据勾股定理可得方程22+x2=(4x)2,再解方程即可【详解】AB=3,AD=4,DC=3根据勾股定理得AC=5根据折叠可得:DECDEC,DC=DC=3,DE=DE设ED=x,则DE=x,AD=ACCD=2,AE=4x,在RtAED中:(AD)2+(ED)2=AE2,即22+x2=(4x)2,解得:x=故选A.10、A【解析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到C=DAC,求得DAC=30,根据三角形的内角和得到BAC=95,即可得到结论【详解】由题意可得:MN是AC的垂直平分线

13、,则AD=DC,故C=DAC,C=30,DAC=30,B=55,BAC=95,BAD=BAC-CAD=65,故选A【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键二、填空题(共7小题,每小题3分,满分21分)11、【解析】解:根据题意可得:列表如下红1红2黄1黄2黄3红1红1,红2红1,黄1红1,黄2红1,黄3红2红2,红1红2,黄1红2,黄2红2,黄3黄1黄1,红1黄1,红2黄1,黄2黄1,黄3黄2黄2,红1黄2,红2黄2,黄1黄2,黄3黄3黄3,红1黄3,红2黄3,黄1黄3,黄2共有20种所有等可能的结果,其中两个颜色相同的有8种情况,故摸

14、出两个颜色相同的小球的概率为【点睛】本题考查列表法和树状图法,掌握步骤正确列表是解题关键12、4 【解析】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根 16的平方根为4和-416的算术平方根为413、5 见解析 【解析】(1)由勾股定理即可求解;(2)寻找格点M和N,构建与ABC全等的AMN,易证MNAC,从而得到MN与AC的交点即为所求D点.【详解】(1)AC=;(2)如图,连接格点M和N,由图可知:AB=AM=4,BC=AN=,AC=MN=,ABCMAN,AMN=BAC,MAD+CAB=MAD+AMN=90,MNAC,易解得MAN以MN为底时的高为,A

15、B2=ADAC,AD=AB2AC=,综上可知,MN与AC的交点即为所求D点.【点睛】本题考查了平面直角坐标系中定点的问题,理解第2问中构造全等三角形从而确定D点的思路.14、a+b【解析】将原式通分相减,然后用平方差公式分解因式,再约分化简即可。【详解】解:原式=a+b【点睛】此题主要考查了分式的混合运算,熟练掌握运算法则是解本题的关键15、【解析】根据被开方式是非负数列式求解即可.【详解】依题意,得,解得:,故答案为:【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:当函数解析式是整式时,字母可取全体实数;当函数解析式是分式时,考虑分式的分母不能为0;当函

16、数解析式是二次根式时,被开方数为非负数对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义16、40【解析】根据旋转的性质可得出ABAD、BAD100,再根据等腰三角形的性质可求出B的度数,此题得解【详解】根据旋转的性质,可得:ABAD,BAD100,BADB(180100)40故填:40.【点睛】本题考查了旋转的性质以及等腰三角形的性质,根据旋转的性质结合等腰三角形的性质求出B的度数是解题的关键17、【解析】试题分析:依题意知=考点:整式运算点评:本题难度较低,主要考查学生对整式运算中多项式计算知识点的掌握。同底数幂相乘除,指数相加减。三、解答题(共7小题,

17、满分69分)18、(1)证明见解析(2)13【解析】(1)先根据同角的余角相等得到ACE=BCD,再结合等腰直角三角形的性质即可证得结论;(2)根据全等三角形的性质可得AE=BD,EAC=B=45,即可证得AED是直角三角形,再利用勾股定理即可求出DE的长【详解】(1)ACB和ECD都是等腰直角三角形AC=BC,EC=DC,ACB=ECD=90ACE=DCE-DCA,BCD=ACB-DCAACE=BCDACEBCD(SAS);(2)ACB和ECD都是等腰直角三角形BAC=B=45ACEBCDAE=BD=12,EAC=B=45EAD=EAC+BAC=90,EAD是直角三角形【点睛】解答本题的关键

18、是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.19、(1)(2)1(3)【解析】(1)由抛物线与x轴只有一个交点,可知=0;(2)由抛物线与x轴有两个交点且AB=2,可知A、B坐标,代入解析式,可得k值;(3)通过解析式求出对称轴,与y轴交点,并根据系数的关系得出判断【详解】(1)二次函数ykx24kx+3与x轴只有一个公共点,关于x的方程kx24kx+30有两个相等的实数根,(4k)243k16k212k0,解得:k10,k2,k0,k;(2)AB2,抛物线对称轴为x2,A、B点坐标为(1,0),(3,0),将(1,0)代入解析式,可得k1,(3)当x0时,y3,二次函数图

19、象与y轴的交点为(0,3),正确;抛物线的对称轴为x2,抛物线的对称轴不变,正确;二次函数ykx24kx+3k(x24x)+3,将其看成y关于k的一次函数,令k的系数为0,即x24x0,解得:x10,x24,抛物线一定经过两个定点(0,3)和(4,3),正确综上可知:正确的结论有【点睛】本题考查了二次函数的性质,与x、y轴的交点问题,对称轴问题,以及系数与图象的关系问题,是一道很好的综合问题20、(1)(1,0),(3,0),(0,);(2)在直线AC下方的抛物线上不存在点P,使SACP4,见解析;(3)见解析【解析】(1)根据坐标轴上点的特点建立方程求解,即可得出结论;(2)在直线AC下方轴

20、x上一点,使SACH4,求出点H坐标,再求出直线AC的解析式,进而得出点H坐标,最后用过点H平行于直线AC的直线与抛物线解析式联立求解,即可得出结论;(3)联立直线DE的解析式与抛物线解析式联立,得出,进而得出,再由得出,进而求出,同理可得,再根据,即可得出结论【详解】(1)针对于抛物线,令x0,则,令y0,则,解得,x1或x3,综上所述:,;(2)由(1)知,BMFM,直线AC的解析式为:,联立抛物线解析式得:,解得:或,如图1,设H是直线AC下方轴x上一点,AHa且SACH4,解得:,过H作lAC,直线l的解析式为,联立抛物线解析式,解得,即:在直线AC下方的抛物线上不存在点P,使;(3)

21、如图2,过D,E分别作x轴的垂线,垂足分别为G,H,设,直线DE的解析式为,联立直线DE的解析式与抛物线解析式联立,得,DGx轴,DGOM,即,同理可得,即,直线DE的解析式为,直线DE必经过一定点【点睛】本题主要考查了二次函数的综合应用,熟练掌握二次函数与一次函数的综合应用,交点的求法,待定系数法求函数解析式等方法式解决本题的关键.21、(1)200,90 (2)图形见解析(3)750人【解析】试题分析:(1)用对于共享单车不了解的人数20除以对于共享单车不了解的人数所占得百分比即可得本次调查人数;用总人数乘以使用过共享单车人数所占的百分比即可得使用过共享单车的人数;(2)用使用过共享单车的

22、总人数减去02,46,68的人数,即可得24的人数,再图上画出即可;(3)用3000乘以骑行路程在24千米的人数所占的百分比即可得每天的骑行路程在24千米的人数.试题解析:(1)2010%=200,200(1-45%-10%)=90 ; (2)90-25-10-5=50,补全条形统计图 (3)=750(人) 答: 每天的骑行路程在24千米的大约750人22、(1)结果见解析;(2)不公平,理由见解析.【解析】判断游戏是否公平,即是看双方取胜的概率是否相同,若相同,则公平,不相同则不公平23、(1);(2)详见解析;(3)AE=【解析】(1)由四边形ABCD是正方形,直角MPN,易证得BOECOF(ASA),则可证得S四边形OEBF=SBOC=S正方形ABCD;(2)易证得OEGOBE,然后由相似三角形的对应边成比例,证得OGOB=OE2,再利用OB与BD的关系,OE与EF的关系,即可证得结论;(3)首先设AE=x,则BE=CF=1x,BF=x,继而表示出BEF与COF的面积之和,然后利用二次函数的最值问题,求得AE的长【详解】(1)四边形ABCD是正方形,OB=OC,OBE=OCF=45,BOC=90,BOF+COF=90

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论