版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,在O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:ABCD; AOB=4ACD;弧AD=弧BD;PO=PD,其中正确的个数是()A4B1C2D32如图,已知点A(1,0),B(0,2),以AB为边在第一象限内作正方形ABC
2、D,直线CD与y轴交于点G,再以DG为边在第一象限内作正方形DEFG,若反比例函数的图像经过点E,则k的值是 ( ) (A)33 (B)34 (C)35 (D)363已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为()A1B2C3D44如图是某个几何体的展开图,该几何体是()A三棱柱B三棱锥C圆柱D圆锥5的绝对值是()A8B8CD6如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()ABCD7如果t0,那么a+t与a的大小关系是( )Aa+ta Ba+ta Ca+ta D不能确定8研究表明某流感
3、病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是( )A0.156105B0.156105C1.56106D1.561069如图,BD为O的直径,点A为弧BDC的中点,ABD35,则DBC()A20B35C15D4510如图,点D、E分别为ABC的边AB、AC上的中点,则ADE的面积与四边形BCED的面积的比为()A1:2B1:3C1:4D1:1二、填空题(本大题共6个小题,每小题3分,共18分)11如图,抛物线yax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线MPN上移动,它们的坐标分别为M(1,4)、P(3,4)、N(3,1)若在抛物线移动过程中,点A横
4、坐标的最小值为3,则ab+c的最小值是_12如图,点A在反比例函数y=(x0)上,以OA为边作正方形OABC,边AB交y轴于点P,若PA:PB=1:2,则正方形OABC的面积=_13分解因式(xy1)2(x+y2xy)(2xy)=_14一个扇形的面积是cm,半径是3cm,则此扇形的弧长是_15已知实数a、b、c满足+|102c|=0,则代数式ab+bc的值为_16抛物线y=x2+4x1的顶点坐标为 三、解答题(共8题,共72分)17(8分)在平面直角坐标系中,二次函数y=x2+ax+2a+1的图象经过点M(2,-3)。(1)求二次函数的表达式;(2)若一次函数y=kx+b(k0)的图象与二次函
5、数y=x2+ax+2a+1的图象经过x轴上同一点,探究实数k,b满足的关系式;(3)将二次函数y=x2+ax+2a+1的图象向右平移2个单位,若点P(x0,m)和Q(2,n)在平移后的图象上,且mn,结合图象求x0的取值范围18(8分)如图,在ABC中,ABC=90,BDAC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F(1)当AE平分BAC时,求证:BEF=BFE;(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长19(8分)如图,在ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB若ABC=70,则NMA的度数是 度
6、若AB=8cm,MBC的周长是14cm求BC的长度;若点P为直线MN上一点,请你直接写出PBC周长的最小值20(8分)正方形ABCD中,点P为直线AB上一个动点(不与点A,B重合),连接DP,将DP绕点P旋转90得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N问题出现:(1)当点P在线段AB上时,如图1,线段AD,AP,DM之间的数量关系为 ;题探究:(2)当点P在线段BA的延长线上时,如图2,线段AD,AP,DM之间的数量关系为 ;当点P在线段AB的延长线上时,如图3,请写出线段AD,AP,DM之间的数量关系并证明;问题拓展:(3)在(1)(2)的条件下,若AP=,DE
7、M=15,则DM= 21(8分)如图,在平面直角坐标系中,抛物线的图象经过和两点,且与轴交于,直线是抛物线的对称轴,过点的直线与直线相交于点,且点在第一象限(1)求该抛物线的解析式;(2)若直线和直线、轴围成的三角形面积为6,求此直线的解析式;(3)点在抛物线的对称轴上,与直线和轴都相切,求点的坐标22(10分)已知ABC中,D为AB边上任意一点,DFAC交BC于F,AEBC,CDE=ABCACB,(1)如图1所示,当=60时,求证:DCE是等边三角形;(2)如图2所示,当=45时,求证:=;(3)如图3所示,当为任意锐角时,请直接写出线段CE与DE的数量关系:_. 23(12分)解方程组:2
8、4对于平面直角坐标系xOy中的点P和直线m,给出如下定义:若存在一点P,使得点P到直线m的距离等于1,则称P为直线m的平行点(1)当直线m的表达式为yx时,在点,中,直线m的平行点是_;O的半径为,点Q在O上,若点Q为直线m的平行点,求点Q的坐标(2)点A的坐标为(n,0),A半径等于1,若A上存在直线的平行点,直接写出n的取值范围参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据垂径定理,圆周角的性质定理即可作出判断【详解】P是弦AB的中点,CD是过点P的直径ABCD,弧AD=弧BD,故正确,正确;AOB=2AOD=4ACD,故正确P是OD上的任意一点,因而不一定正确故
9、正确的是:故选:D【点睛】本题主要考查了垂径定理,圆周角定理,正确理解定理是关键平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧;同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.2、D【解析】试题分析:过点E作EMOA,垂足为M,A(1,0),B(0,2),OA-1,OB=2,又AOB=90,AB=,AB/CD,ABO=CBG,BCG=90,BCGAOB,BC=AB=,CG=2,CD=AD=AB=,DG=3,DE=DG=3,AE=4,BAD=90,EAM+BAO=90,BAO+ABO=90,EAM=ABO,又EMA=90,EAMABO,即,AM=8,EM=4,AM=9,E(
10、9,4),k=49=36;故选D考点:反比例函数综合题3、C【解析】先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1由于原方程只有一个实数根,因此,方程的根有两种情况:(1)方程有两个相等的实数根,此二等根使x(x-2)1;(2)方程有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)1针对每一种情况,分别求出a的值及对应的原方程的根【详解】去分母,将原方程两边同乘x(x2),整理得2x23x+(3a)=1方程的根的情况有两种:(1)方程有两个相等的实数根,即=932(3a)=1解得a=当a=时,解方程2x23x+(+3)=1,得x1=x2=(2)方程有两个不
11、等的实数根,而其中一根使原方程分母为零,即方程有一个根为1或2(i)当x=1时,代入式得3a=1,即a=3当a=3时,解方程2x23x=1,x(2x3)=1,x1=1或x2=1.4而x1=1是增根,即这时方程的另一个根是x=1.4它不使分母为零,确是原方程的唯一根(ii)当x=2时,代入式,得2323+(3a)=1,即a=5当a=5时,解方程2x23x2=1,x1=2,x2= x1是增根,故x=为方程的唯一实根;因此,若原分式方程只有一个实数根时,所求的a的值分别是,3,5共3个故选C【点睛】考查了分式方程的解法及增根问题由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行
12、讨论理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键4、A【解析】侧面为长方形,底面为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故本题选择A.【点睛】会观察图形的特征,依据侧面和底面的图形确定该几何体是解题的关键.5、C【解析】根据绝对值的计算法则解答如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a的绝对值是它的相反数a;当a是零时,a的绝对值是零【详解】解:故选【点睛】此题重点考查学生对绝对值的理解,熟练掌握绝对值的计算方法是解题的关键.6、D【解析】如图
13、,连接AB,由圆周角定理,得C=ABO,在RtABO中,OA=3,OB=4,由勾股定理,得AB=5,故选D7、A【解析】试题分析:根据不等式的基本性质即可得到结果.t0,ata,故选A.考点:本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.8、C【解析】解:,故选C.9、A【解析】根据ABD35就可以求出的度数,再根据,可以求出 ,因此就可以求得的度数,从而求得DBC【详解】解:ABD35,的度数都是70,BD为直径,的度数是18070110,点A为弧BDC的中点,的度数也是110,的度数是110+11018040
14、,DBC20,故选:A【点睛】本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力10、B【解析】根据中位线定理得到DEBC,DE=BC,从而判定ADEABC,然后利用相似三角形的性质求解.【详解】解:D、E分别为ABC的边AB、AC上的中点,DE是ABC的中位线,DEBC,DE=BC,ADEABC,ADE的面积:ABC的面积=1:4,ADE的面积:四边形BCED的面积=1:3;故选B【点睛】本题考查三角形中位线定理及相似三角形的判定与性质二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】由题意得:当顶点在M处,点A横坐标为-3,可以求出抛物线的a值;当顶点在N处时,
15、y=a-b+c取得最小值,即可求解【详解】解:由题意得:当顶点在M处,点A横坐标为-3,则抛物线的表达式为:y=a(x+1)2+4,将点A坐标(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,当x=-1时,y=a-b+c,顶点在N处时,y=a-b+c取得最小值,顶点在N处,抛物线的表达式为:y=-(x-3)2+1,当x=-1时,y=a-b+c=-(-1-3)2+1=-1,故答案为-1【点睛】本题考查的是二次函数知识的综合运用,本题的核心是确定顶点在M、N处函数表达式,其中函数的a值始终不变12、1.【解析】根据题意作出合适的辅助线,然后根据正方形的性质和反比例函数的性质,相似三
16、角形的判定和性质、勾股定理可以求得AB的长【详解】解:由题意可得:OA=AB,设AP=a,则BP=2a,OA=3a,设点A的坐标为(m,),作AEx轴于点EPAO=OEA=90,POA+AOE=90,AOE+OAE=90,POA=OAE,POAOAE,=,即=,解得:m=1或m=1(舍去),点A的坐标为(1,3),OA=,正方形OABC的面积=OA2=1故答案为1【点睛】本题考查了反比例函数图象点的坐标特征、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答13、(y1)1(x1)1【解析】解:令x+y=a,xy=b,则(xy1)1(x+y1xy)(1xy)
17、=(b1)1(a1b)(1a)=b11b+1+a11a1ab+4b=(a11ab+b1)+1b1a+1=(ba)1+1(ba)+1=(ba+1)1;即原式=(xyxy+1)1=x(y1)(y1)1=(y1)(x1)1=(y1)1(x1)1故答案为(y1)1(x1)1点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(1)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.14、【解析】根据扇形面积公式求解即可【详解】根据扇形面积公式.可得:,故答案:.【点睛】本题主要
18、考查了扇形的面积和弧长之间的关系, 利用扇形弧长和半径代入公式即可求解, 正确理解公式是解题的关键. 注意在求扇形面积时, 要根据条件选择扇形面积公式.15、-1【解析】试题分析:根据非负数的性质可得:,解得:,则ab+bc=(11)6+65=66+30=116、(2,3)【解析】试题分析:利用配方法将抛物线的解析式y=x2+4x1转化为顶点式解析式y=(x2)2+3,然后求其顶点坐标为:(2,3)考点:二次函数的性质三、解答题(共8题,共72分)17、 (1)y=x2-2x-3;(2)k=b;(3)x02或x01【解析】(1)将点M坐标代入y=x2+ax+2a+1,求出a的值,进而可得到二次
19、函数表达式;(2)先求出抛物线与x轴的交点,将交点代入一次函数解析式,即可得到k,b满足的关系;(3)先求出平移后的新抛物线的解析式,确定新抛物线的对称轴以及Q的对称点Q,根据mn结合图像即可得到x0的取值范围.【详解】(1)把M(2,-3)代入y=x2+ax+2a+1,可以得到1+2a+2a+1=-3,a=-2,因此,二次函数的表达式为:y=x2-2x-3;(2)y=x2-2x-3与x轴的交点是:(3,0),(-1,0)当y=kx+b(k0)经过(3,0)时,3k+b=0;当y=kx+b(k0)经过(-1,0)时,k=b(3)将二次函数y=x2-2x-3的图象向右平移2个单位得到y=x2-6
20、x+5,对称轴是直线x=3,因此Q(2,n)在图象上的对称点是(1,n),若点P(x0,m)使得mn,结合图象可以得出x02或x01【点睛】本题主要考查二次函数的图像和性质,熟练掌握这些知识点是解题的关键.18、(1)证明见解析;(1)2【解析】分析:(1)根据角平分线的定义可得1=1,再根据等角的余角相等求出BEF=AFD,然后根据对顶角相等可得BFE=AFD,等量代换即可得解; (1)根据中点定义求出BC,利用勾股定理列式求出AB即可详解:(1)如图,AE平分BAC,1=1 BDAC,ABC=90,1+BEF=1+AFD=90,BEF=AFD BFE=AFD(对顶角相等),BEF=BFE;
21、 (1)BE=1,BC=4,由勾股定理得:AB=2 点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键19、(1)50;(2)6;1 【解析】试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出MBC的周长=AC+BC,再代入数据进行计算即可得解;当点P与M重合时,PBC周长的值最小,于是得到结论试题解析:解:(1)AB=AC,C=ABC=70,A=40AB的垂直平分线交AB于点N,ANM=90,NMA=50故答案为50;(2)MN是AB的
22、垂直平分线,AM=BM,MBC的周长=BM+CM+BC=AM+CM+BC=AC+BCAB=8,MBC的周长是1,BC=18=6;当点P与M重合时,PBC周长的值最小,理由:PB+PC=PA+PC,PA+PCAC,P与M重合时,PA+PC=AC,此时PB+PC最小,PBC周长的最小值=AC+BC=8+6=120、 (1) DM=AD+AP ;(2) DM=ADAP ; DM=APAD ;(3) 3或1【解析】(1)根据正方形的性质和全等三角形的判定和性质得出ADPPFN,进而解答即可;(2)根据正方形的性质和全等三角形的判定和性质得出ADPPFN,进而解答即可;根据正方形的性质和全等三角形的判定
23、和性质得出ADPPFN,进而解答即可;(3)分两种情况利用勾股定理和三角函数解答即可【详解】(1)DM=AD+AP,理由如下:正方形ABCD,DC=AB,DAP=90,将DP绕点P旋转90得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N,DP=PE,PNE=90,DPE=90,ADP+DPA=90,DPA+EPN=90,DAP=EPN,在ADP与NPE中,ADPNPE(AAS),AD=PN,AP=EN,AN=DM=AP+PN=AD+AP;(2)DM=ADAP,理由如下:正方形ABCD,DC=AB,DAP=90,将DP绕点P旋转90得到EP,连接DE,过点E作CD的垂线,交
24、射线DC于M,交射线AB于N,DP=PE,PNE=90,DPE=90,ADP+DPA=90,DPA+EPN=90,DAP=EPN,在ADP与NPE中,ADPNPE(AAS),AD=PN,AP=EN,AN=DM=PNAP=ADAP;DM=APAD,理由如下:DAP+EPN=90,EPN+PEN=90,DAP=PEN,又A=PNE=90,DP=PE,DAPPEN,AD=PN,DM=AN=APPN=APAD;(3)有两种情况,如图2,DM=3,如图3,DM=1;如图2:DEM=15,PDA=PDEADE=4515=30,在RtPAD中AP=,AD=3,DM=ADAP=3;如图3:DEM=15,PDA
25、=PDEADE=4515=30,在RtPAD中AP=,AD=APtan30=1,DM=APAD=1故答案为;DM=AD+AP;DM=ADAP;3或1【点睛】此题是四边形综合题,主要考查了正方形的性质全等三角形的判定和性质,分类讨论的数学思想解决问题,判断出ADPPFN是解本题的关键21、(1);(2);(3)或【解析】(1)根据图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),可利用待定系数法求出二次函数解析式;(2)根据直线AB与抛物线的对称轴和x轴围成的三角形面积为6,得出AC,BC的长,得出B点的坐标,即可利用待定系数法求出一次函数解析式;(3)利用三角形相似求出ABCP
26、BF,即可求出圆的半径,即可得出P点的坐标【详解】(1)抛物线的图象经过,把,代入得:解得:,抛物线解析式为;(2)抛物线改写成顶点式为,抛物线对称轴为直线,对称轴与轴的交点C的坐标为,设点B的坐标为,则,点B的坐标为,设直线解析式为:,把,代入得:,解得:,直线解析式为:(3)当点P在抛物线的对称轴上,P与直线AB和x轴都相切,设P与AB相切于点F,与x轴相切于点C,如图1;PFAB,AF=AC,PF=PC,AC=1+2=3,BC=4,AB=5,AF=3,BF=2,FBP=CBA,BFP=BCA=90,ABCPBF,解得:,点P的坐标为(2,);设P与AB相切于点F,与轴相切于点C,如图2:
27、PFAB,PF=PC,AC=3,BC=4, AB=5,FBP=CBA,BFP=BCA=90,ABCPBF,解得:,点P的坐标为(2,-6),综上所述,与直线和都相切时,或【点睛】本题考查了二次函数综合题,涉及到用待定系数法求一函数的解析式、二次函数的解析式及相似三角形的判定和性质、切线的判定和性质,根据题意画出图形,利用数形结合求解是解答此题的关键22、1【解析】试题分析:(1)证明CFDDAE即可解决问题(2)如图2中,作FGAC于G只要证明CFDDAE,推出=,再证明CF=AD即可(3)证明EC=ED即可解决问题试题解析:(1)证明:如图1中,ABC=ACB=60,ABC是等边三角形,BC
28、=BADFAC,BFD=BCA=60,BDF=BAC=60,BDF是等边三角形,BF=BD,CF=AD,CFD=120AEBC,B+DAE=180,DAE=CFD=120CDA=B+BCD=CDE+ADECDE=B=60,FCD=ADE,CFDDAE,DC=DECDE=60,CDE是等边三角形 (2)证明:如图2中,作FGAC于GB=ACB=45,BAC=90,ABC是等腰直角三角形DFAC,BDF=BAC=90,BFD=45,DFC=135AEBC,BAE+B=180,DFC=DAE=135CDA=B+BCD=CDE+ADECDE=B=45,FCD=ADE,CFDDAE,=四边形ADFG是矩形,FC=FG,FG=AD,CF=AD,=(3)解:如图3中,设AC与DE交于点O AEBC,EAO=ACBCDE=ACB,CDO=OAECOD=EOA,CODEOA,=,=COE=DOA,COEDOA,CEO=DAOCED+CDE+DCE=180,BAC+B+ACB=180CDE=B=ACB,EDC=ECD,EC=ED,=1点睛:本题考查了相似三角形综合题、全等三角形的判定和性质等知识,解题的关键是学会添加
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《中国的国土》课件
- 弱电专业培训课件
- 乡镇扶贫工作计划范文
- 感统训练讲座课件
- 《苔背后的故事》课件
- 《区域农业的发展》课件
- 高一的地理知识点-人文地理
- 二零二四年度教育培训项目委托运营合同3篇
- 《学习雷锋好榜样》主题班会课件
- 2024年度泥瓦工分包工程合同6篇
- 疫情盒饭配送合同模板
- 政府采购评审专家考试试题库(完整版)
- 易制毒化学品安全培训培训课件
- 上海市安全员-C3证(专职安全员-综合类)证考试题及答案
- 2024年新人教版三年级数学上册《第8单元第2课时 比较几分之一的大小》教学课件
- DL-T 572-2021电力变压器运行规程-PDF解密
- 23秋国家开放大学《视觉设计基础》形考任务1-5参考答案
- NY∕T 3349-2021 畜禽屠宰加工人员岗位技能要求
- GB∕T 10544-2022 橡胶软管及软管组合件 油基或水基流体适用的钢丝缠绕增强外覆橡胶液压型 规范
- 《西安事变》PPT课件.ppt
- 小学二年级阅读练习(课堂PPT)
评论
0/150
提交评论